JAVA-Web开发

分類 编程语言, Java

Web开发

从本章开始,我们就正式进入到JavaEE的领域。

什么是JavaEE?JavaEE是Java Platform Enterprise Edition的缩写,即Java企业平台。我们前面介绍的所有基于标准JDK的开发都是JavaSE,即Java Platform Standard Edition。此外,还有一个小众不太常用的JavaME:Java Platform Micro Edition,是Java移动开发平台(非Android),它们三者关系如下:

1
2
3
4
5
6
7
8
9
┌────────────────┐
│ JavaEE │
│┌──────────────┐│
││ JavaSE ││
││┌────────────┐││
│││ JavaME │││
││└────────────┘││
│└──────────────┘│
└────────────────┘

JavaME是一个裁剪后的“微型版”JDK,现在使用很少,我们不用管它。JavaEE也不是凭空冒出来的,它实际上是完全基于JavaSE,只是多了一大堆服务器相关的库以及API接口。所有的JavaEE程序,仍然是运行在标准的JavaSE的虚拟机上的。

最早的JavaEE的名称是J2EE:Java 2 Platform Enterprise Edition,后来改名为JavaEE。由于Oracle将JavaEE移交给Eclipse开源组织时,不允许他们继续使用Java商标,所以JavaEE再次改名为Jakarta EE。因为这个拼写比较复杂而且难记,所以我们后面还是用JavaEE这个缩写。

JavaEE并不是一个软件产品,它更多的是一种软件架构和设计思想。我们可以把JavaEE看作是在JavaSE的基础上,开发的一系列基于服务器的组件、API标准和通用架构。

JavaEE最核心的组件就是基于Servlet标准的Web服务器,开发者编写的应用程序是基于Servlet API并运行在Web服务器内部的:

1
2
3
4
5
6
7
8
9
10
┌─────────────┐
│┌───────────┐│
││ User App ││
│├───────────┤│
││Servlet API││
│└───────────┘│
│ Web Server │
├─────────────┤
│ JavaSE │
└─────────────┘

此外,JavaEE还有一系列技术标准:

  • EJB:Enterprise JavaBean,企业级JavaBean,早期经常用于实现应用程序的业务逻辑,现在基本被轻量级框架如Spring所取代;
  • JAAS:Java Authentication and Authorization Service,一个标准的认证和授权服务,常用于企业内部,Web程序通常使用更轻量级的自定义认证;
  • JCA:JavaEE Connector Architecture,用于连接企业内部的EIS系统等;
  • JMS:Java Message Service,用于消息服务;
  • JTA:Java Transaction API,用于分布式事务;
  • JAX-WS:Java API for XML Web Services,用于构建基于XML的Web服务;

目前流行的基于Spring的轻量级JavaEE开发架构,使用最广泛的是Servlet和JMS,以及一系列开源组件。本章我们将详细介绍基于Servlet的Web开发。



今天我们访问网站,使用App时,都是基于Web这种Browser/Server模式,简称BS架构,它的特点是,客户端只需要浏览器,应用程序的逻辑和数据都存储在服务器端。浏览器只需要请求服务器,获取Web页面,并把Web页面展示给用户即可。

Web页面具有极强的交互性。由于Web页面是用HTML编写的,而HTML具备超强的表现力,并且,服务器端升级后,客户端无需任何部署就可以使用到新的版本,因此,BS架构升级非常容易。

HTTP协议

在Web应用中,浏览器请求一个URL,服务器就把生成的HTML网页发送给浏览器,而浏览器和服务器之间的传输协议是HTTP,所以:

  • HTML是一种用来定义网页的文本,会HTML,就可以编写网页;
  • HTTP是在网络上传输HTML的协议,用于浏览器和服务器的通信。

HTTP协议是一个基于TCP协议之上的请求-响应协议,它非常简单,我们先使用Chrome浏览器查看新浪首页,然后选择View - Developer - Inspect Elements就可以看到HTML:

html

切换到Network,重新加载页面,可以看到浏览器发出的每一个请求和响应:

http

对于Browser来说,请求页面的流程如下:

  1. 与服务器建立TCP连接;
  2. 发送HTTP请求;
  3. 收取HTTP响应,然后把网页在浏览器中显示出来。

浏览器发送的HTTP请求如下:

1
2
3
4
5
GET / HTTP/1.1
Host: www.sina.com.cn
User-Agent: Mozilla/5.0 xxx
Accept: */*
Accept-Language: zh-CN,zh;q=0.9,en-US;q=0.8

其中,第一行表示使用GET请求获取路径为/的资源,并使用HTTP/1.1协议,从第二行开始,每行都是以Header: Value形式表示的HTTP头,比较常用的HTTP Header包括:

  • Host: 表示请求的主机名,因为一个服务器上可能运行着多个网站,因此,Host表示浏览器正在请求的域名;
  • User-Agent: 标识客户端本身,例如Chrome浏览器的标识类似Mozilla/5.0 ... Chrome/79,IE浏览器的标识类似Mozilla/5.0 (Windows NT ...) like Gecko
  • Accept:表示浏览器能接收的资源类型,如text/*image/*或者*/*表示所有;
  • Accept-Language:表示浏览器偏好的语言,服务器可以据此返回不同语言的网页;
  • Accept-Encoding:表示浏览器可以支持的压缩类型,例如gzip, deflate, br

服务器的响应如下:

1
2
3
4
5
6
7
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 21932
Content-Encoding: gzip
Cache-Control: max-age=300

<html>...网页数据...

服务器响应的第一行总是版本号+空格+数字+空格+文本,数字表示响应代码,其中2xx表示成功,3xx表示重定向,4xx表示客户端引发的错误,5xx表示服务器端引发的错误。数字是给程序识别,文本则是给开发者调试使用的。常见的响应代码有:

  • 200 OK:表示成功;
  • 301 Moved Permanently:表示该URL已经永久重定向;
  • 302 Found:表示该URL需要临时重定向;
  • 304 Not Modified:表示该资源没有修改,客户端可以使用本地缓存的版本;
  • 400 Bad Request:表示客户端发送了一个错误的请求,例如参数无效;
  • 401 Unauthorized:表示客户端因为身份未验证而不允许访问该URL;
  • 403 Forbidden:表示服务器因为权限问题拒绝了客户端的请求;
  • 404 Not Found:表示客户端请求了一个不存在的资源;
  • 500 Internal Server Error:表示服务器处理时内部出错,例如因为无法连接数据库;
  • 503 Service Unavailable:表示服务器此刻暂时无法处理请求。

从第二行开始,服务器每一行均返回一个HTTP头。服务器经常返回的HTTP Header包括:

  • Content-Type:表示该响应内容的类型,例如text/htmlimage/jpeg
  • Content-Length:表示该响应内容的长度(字节数);
  • Content-Encoding:表示该响应压缩算法,例如gzip
  • Cache-Control:指示客户端应如何缓存,例如max-age=300表示可以最多缓存300秒。

HTTP请求和响应都由HTTP Header和HTTP Body构成,其中HTTP Header每行都以\r\n结束。如果遇到两个连续的\r\n,那么后面就是HTTP Body。浏览器读取HTTP Body,并根据Header信息中指示的Content-TypeContent-Encoding等解压后显示网页、图像或其他内容。

通常浏览器获取的第一个资源是HTML网页,在网页中,如果嵌入了JavaScript、CSS、图片、视频等其他资源,浏览器会根据资源的URL再次向服务器请求对应的资源。

关于HTTP协议的详细内容,请参考HTTP权威指南一书,或者Mozilla开发者网站

我们在前面介绍的HTTP编程是以客户端的身份去请求服务器资源。现在,我们需要以服务器的身份响应客户端请求,编写服务器程序来处理客户端请求通常就称之为Web开发。

编写HTTP Server

我们来看一下如何编写HTTP Server。一个HTTP Server本质上是一个TCP服务器,我们先用TCP编程的多线程实现的服务器端框架:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
public class Server {
public static void main(String[] args) throws IOException {
ServerSocket ss = new ServerSocket(8080); // 监听指定端口
System.out.println("server is running...");
for (;;) {
Socket sock = ss.accept();
System.out.println("connected from " + sock.getRemoteSocketAddress());
Thread t = new Handler(sock);
t.start();
}
}
}

class Handler extends Thread {
Socket sock;

public Handler(Socket sock) {
this.sock = sock;
}

public void run() {
try (InputStream input = this.sock.getInputStream()) {
try (OutputStream output = this.sock.getOutputStream()) {
handle(input, output);
}
} catch (Exception e) {
} finally {
try {
this.sock.close();
} catch (IOException ioe) {
}
System.out.println("client disconnected.");
}
}

private void handle(InputStream input, OutputStream output) throws IOException {
var reader = new BufferedReader(new InputStreamReader(input, StandardCharsets.UTF_8));
var writer = new BufferedWriter(new OutputStreamWriter(output, StandardCharsets.UTF_8));
// TODO: 处理HTTP请求
}
}

只需要在handle()方法中,用Reader读取HTTP请求,用Writer发送HTTP响应,即可实现一个最简单的HTTP服务器。编写代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
private void handle(InputStream input, OutputStream output) throws IOException {
System.out.println("Process new http request...");
var reader = new BufferedReader(new InputStreamReader(input, StandardCharsets.UTF_8));
var writer = new BufferedWriter(new OutputStreamWriter(output, StandardCharsets.UTF_8));
// 读取HTTP请求:
boolean requestOk = false;
String first = reader.readLine();
if (first.startsWith("GET / HTTP/1.")) {
requestOk = true;
}
for (;;) {
String header = reader.readLine();
if (header.isEmpty()) { // 读取到空行时, HTTP Header读取完毕
break;
}
System.out.println(header);
}
System.out.println(requestOk ? "Response OK" : "Response Error");
if (!requestOk) {
// 发送错误响应:
writer.write("HTTP/1.0 404 Not Found\r\n");
writer.write("Content-Length: 0\r\n");
writer.write("\r\n");
writer.flush();
} else {
// 发送成功响应:
String data = "<html><body><h1>Hello, world!</h1></body></html>";
int length = data.getBytes(StandardCharsets.UTF_8).length;
writer.write("HTTP/1.0 200 OK\r\n");
writer.write("Connection: close\r\n");
writer.write("Content-Type: text/html\r\n");
writer.write("Content-Length: " + length + "\r\n");
writer.write("\r\n"); // 空行标识Header和Body的分隔
writer.write(data);
writer.flush();
}
}

这里的核心代码是,先读取HTTP请求,这里我们只处理GET /的请求。当读取到空行时,表示已读到连续两个\r\n,说明请求结束,可以发送响应。发送响应的时候,首先发送响应代码HTTP/1.0 200 OK表示一个成功的200响应,使用HTTP/1.0协议,然后,依次发送Header,发送完Header后,再发送一个空行标识Header结束,紧接着发送HTTP Body,在浏览器输入http://local.liaoxuefeng.com:8080/就可以看到响应页面:

httpserver

HTTP目前有多个版本,1.0是早期版本,浏览器每次建立TCP连接后,只发送一个HTTP请求并接收一个HTTP响应,然后就关闭TCP连接。由于创建TCP连接本身就需要消耗一定的时间,因此,HTTP 1.1允许浏览器和服务器在同一个TCP连接上反复发送、接收多个HTTP请求和响应,这样就大大提高了传输效率。

我们注意到HTTP协议是一个请求-响应协议,它总是发送一个请求,然后接收一个响应。能不能一次性发送多个请求,然后再接收多个响应呢?HTTP 2.0可以支持浏览器同时发出多个请求,但每个请求需要唯一标识,服务器可以不按请求的顺序返回多个响应,由浏览器自己把收到的响应和请求对应起来。可见,HTTP 2.0进一步提高了传输效率,因为浏览器发出一个请求后,不必等待响应,就可以继续发下一个请求。

HTTP 3.0为了进一步提高速度,将抛弃TCP协议,改为使用无需创建连接的UDP协议,目前HTTP 3.0仍然处于实验阶段。

练习

编写一个简单的HTTP服务器。

下载练习

小结

使用B/S架构时,总是通过HTTP协议实现通信;

Web开发通常是指开发服务器端的Web应用程序。

在上一节中,我们看到,编写HTTP服务器其实是非常简单的,只需要先编写基于多线程的TCP服务,然后在一个TCP连接中读取HTTP请求,发送HTTP响应即可。

但是,要编写一个完善的HTTP服务器,以HTTP/1.1为例,需要考虑的包括:

  • 识别正确和错误的HTTP请求;
  • 识别正确和错误的HTTP头;
  • 复用TCP连接;
  • 复用线程;
  • IO异常处理;

这些基础工作需要耗费大量的时间,并且经过长期测试才能稳定运行。如果我们只需要输出一个简单的HTML页面,就不得不编写上千行底层代码,那就根本无法做到高效而可靠地开发。

因此,在JavaEE平台上,处理TCP连接,解析HTTP协议这些底层工作统统扔给现成的Web服务器去做,我们只需要把自己的应用程序跑在Web服务器上。为了实现这一目的,JavaEE提供了Servlet API,我们使用Servlet API编写自己的Servlet来处理HTTP请求,Web服务器实现Servlet API接口,实现底层功能:

1
2
3
4
5
6
7
                 ┌───────────┐
│My Servlet │
├───────────┤
│Servlet API│
┌───────┐ HTTP ├───────────┤
│Browser│◀──────▶│Web Server │
└───────┘ └───────────┘

我们来实现一个最简单的Servlet:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// WebServlet注解表示这是一个Servlet,并映射到地址/:
@WebServlet(urlPatterns = "/")
public class HelloServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp)
throws ServletException, IOException {
// 设置响应类型:
resp.setContentType("text/html");
// 获取输出流:
PrintWriter pw = resp.getWriter();
// 写入响应:
pw.write("<h1>Hello, world!</h1>");
// 最后不要忘记flush强制输出:
pw.flush();
}
}

一个Servlet总是继承自HttpServlet,然后覆写doGet()doPost()方法。注意到doGet()方法传入了HttpServletRequestHttpServletResponse两个对象,分别代表HTTP请求和响应。我们使用Servlet API时,并不直接与底层TCP交互,也不需要解析HTTP协议,因为HttpServletRequestHttpServletResponse就已经封装好了请求和响应。以发送响应为例,我们只需要设置正确的响应类型,然后获取PrintWriter,写入响应即可。

现在问题来了:Servlet API是谁提供?

Servlet API是一个jar包,我们需要通过Maven来引入它,才能正常编译。编写pom.xml文件如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.itranswarp.learnjava</groupId>
<artifactId>web-servlet-hello</artifactId>
<packaging>war</packaging>
<version>1.0-SNAPSHOT</version>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<java.version>17</java.version>
</properties>

<dependencies>
<dependency>
<groupId>jakarta.servlet</groupId>
<artifactId>jakarta.servlet-api</artifactId>
<version>5.0.0</version>
<scope>provided</scope>
</dependency>
</dependencies>

<build>
<finalName>hello</finalName>
</build>
</project>

注意到这个pom.xml与前面我们讲到的普通Java程序有个区别,打包类型不是jar,而是war,表示Java Web Application Archive:

1
<packaging>war</packaging>

引入的Servlet API如下:

1
2
3
4
5
6
<dependency>
<groupId>jakarta.servlet</groupId>
<artifactId>jakarta.servlet-api</artifactId>
<version>5.0.0</version>
<scope>provided</scope>
</dependency>

注意到<scope>指定为provided,表示编译时使用,但不会打包到.war文件中,因为运行期Web服务器本身已经提供了Servlet API相关的jar包。

Servlet版本

要务必注意servlet-api的版本。4.0及之前的servlet-api由Oracle官方维护,引入的依赖项是javax.servlet:javax.servlet-api,编写代码时引入的包名为:

1
import javax.servlet.*;

而5.0及以后的servlet-api由Eclipse开源社区维护,引入的依赖项是jakarta.servlet:jakarta.servlet-api,编写代码时引入的包名为:

1
import jakarta.servlet.*;

教程采用最新的jakarta.servlet:5.0.0版本,但对于很多仅支持Servlet 4.0版本的框架来说,例如Spring 5,我们就只能使用javax.servlet:4.0.0版本,这一点针对不同项目要特别注意。

注意

引入不同的Servlet API版本,编写代码时导入的相关API的包名是不同的。

整个工程结构如下:

1
2
3
4
5
6
7
8
9
10
11
12
web-servlet-hello/
├── pom.xml
└── src/
└── main/
├── java/
│   └── com/
│   └── itranswarp/
│   └── learnjava/
│   └── servlet/
│   └── HelloServlet.java
├── resources/
└── webapp/

目录webapp目前为空,如果我们需要存放一些资源文件,则需要放入该目录。有的同学可能会问,webapp目录下是否需要一个/WEB-INF/web.xml配置文件?这个配置文件是低版本Servlet必须的,但是高版本Servlet已不再需要,所以无需该配置文件。

运行Maven命令mvn clean package,在target目录下得到一个hello.war文件,这个文件就是我们编译打包后的Web应用程序。

注意

如果执行package命令遇到Execution default-war of goal org.apache.maven.plugins:maven-war-plugin:2.2:war failed错误时,可手动指定maven-war-plugin最新版本3.3.2,参考练习工程的pom.xml。

现在问题又来了:我们应该如何运行这个war文件?

普通的Java程序是通过启动JVM,然后执行main()方法开始运行。但是Web应用程序有所不同,我们无法直接运行war文件,必须先启动Web服务器,再由Web服务器加载我们编写的HelloServlet,这样就可以让HelloServlet处理浏览器发送的请求。

因此,我们首先要找一个支持Servlet API的Web服务器。常用的服务器有:

  • Tomcat:由Apache开发的开源免费服务器;
  • Jetty:由Eclipse开发的开源免费服务器;
  • GlassFish:一个开源的全功能JavaEE服务器。

还有一些收费的商用服务器,如Oracle的WebLogic,IBM的WebSphere

无论使用哪个服务器,只要它支持Servlet API 5.0(因为我们引入的Servlet版本是5.0),我们的war包都可以在上面运行。这里我们选择使用最广泛的开源免费的Tomcat服务器。

要运行我们的hello.war,首先要下载Tomcat服务器,解压后,把hello.war复制到Tomcat的webapps目录下,然后切换到bin目录,执行startup.shstartup.bat启动Tomcat服务器:

1
2
3
4
5
6
7
$ ./startup.sh 
Using CATALINA_BASE: .../apache-tomcat-10.1.x
Using CATALINA_HOME: .../apache-tomcat-10.1.x
Using CATALINA_TMPDIR: .../apache-tomcat-10.1.x/temp
Using JRE_HOME: .../jdk-17.jdk/Contents/Home
Using CLASSPATH: .../apache-tomcat-10.1.x/bin/bootstrap.jar:...
Tomcat started.

在浏览器输入http://localhost:8080/hello/即可看到HelloServlet的输出:

hello-servlet

细心的童鞋可能会问,为啥路径是/hello/而不是/?因为一个Web服务器允许同时运行多个Web App,而我们的Web App叫hello,因此,第一级目录/hello表示Web App的名字,后面的/才是我们在HelloServlet中映射的路径。

那能不能直接使用/而不是/hello/?毕竟/比较简洁。

答案是肯定的。先关闭Tomcat(执行shutdown.shshutdown.bat),然后删除Tomcat的webapps目录下的所有文件夹和文件,最后把我们的hello.war复制过来,改名为ROOT.war,文件名为ROOT的应用程序将作为默认应用,启动后直接访问http://localhost:8080/即可。

实际上,类似Tomcat这样的服务器也是Java编写的,启动Tomcat服务器实际上是启动Java虚拟机,执行Tomcat的main()方法,然后由Tomcat负责加载我们的.war文件,并创建一个HelloServlet实例,最后以多线程的模式来处理HTTP请求。如果Tomcat服务器收到的请求路径是/(假定部署文件为ROOT.war),就转发到HelloServlet并传入HttpServletRequestHttpServletResponse两个对象。

因为我们编写的Servlet并不是直接运行,而是由Web服务器加载后创建实例运行,所以,类似Tomcat这样的Web服务器也称为Servlet容器。

Tomcat版本

由于Servlet版本分为<=4.0和>=5.0两种,所以,要根据使用的Servlet版本选择正确的Tomcat版本。从Tomcat版本页可知:

  • 使用Servlet<=4.0时,选择Tomcat 9.x或更低版本;
  • 使用Servlet>=5.0时,选择Tomcat 10.x或更高版本。

运行本节代码需要使用Tomcat>=10.x版本。

在Servlet容器中运行的Servlet具有如下特点:

  • 无法在代码中直接通过new创建Servlet实例,必须由Servlet容器自动创建Servlet实例;
  • Servlet容器只会给每个Servlet类创建唯一实例;
  • Servlet容器会使用多线程执行doGet()doPost()方法。

复习一下Java多线程的内容,我们可以得出结论:

  • 在Servlet中定义的实例变量会被多个线程同时访问,要注意线程安全;
  • HttpServletRequestHttpServletResponse实例是由Servlet容器传入的局部变量,它们只能被当前线程访问,不存在多个线程访问的问题;
  • doGet()doPost()方法中,如果使用了ThreadLocal,但没有清理,那么它的状态很可能会影响到下次的某个请求,因为Servlet容器很可能用线程池实现线程复用。

因此,正确编写Servlet,要清晰理解Java的多线程模型,需要同步访问的必须同步。

练习

HelloServlet增加一个URL参数,例如传入http://localhost:8080/?name=Bob,能够输出Hello, Bob!

下载练习

提示:根据ServletRequest文档,调用合适的方法获取URL参数。

小结

编写Web应用程序就是编写Servlet处理HTTP请求;

Servlet API提供了HttpServletRequestHttpServletResponse两个高级接口来封装HTTP请求和响应;

Web应用程序必须按固定结构组织并打包为.war文件;

需要启动Web服务器来加载我们的war包来运行Servlet。

在上一节中,我们看到,一个完整的Web应用程序的开发流程如下:

  1. 编写Servlet;
  2. 打包为war文件;
  3. 复制到Tomcat的webapps目录下;
  4. 启动Tomcat。

这个过程是不是很繁琐?如果我们想在IDE中断点调试,还需要打开Tomcat的远程调试端口并且连接上去。

javaee-expert

javaee-newbee

许多初学者经常卡在如何在IDE中启动Tomcat并加载webapp,更不要说断点调试了。

我们需要一种简单可靠,能直接在IDE中启动并调试webapp的方法。

因为Tomcat实际上也是一个Java程序,我们看看Tomcat的启动流程:

  1. 启动JVM并执行Tomcat的main()方法;
  2. 加载war并初始化Servlet;
  3. 正常服务。

启动Tomcat无非就是设置好classpath并执行Tomcat某个jar包的main()方法,我们完全可以把Tomcat的jar包全部引入进来,然后自己编写一个main()方法,先启动Tomcat,然后让它加载我们的webapp就行。

我们新建一个web-servlet-embedded工程,编写pom.xml如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.itranswarp.learnjava</groupId>
<artifactId>web-servlet-embedded</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>war</packaging>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<maven.compiler.source>17</maven.compiler.source>
<maven.compiler.target>17</maven.compiler.target>
<java.version>17</java.version>
<tomcat.version>10.1.1</tomcat.version>
</properties>

<dependencies>
<dependency>
<groupId>org.apache.tomcat.embed</groupId>
<artifactId>tomcat-embed-core</artifactId>
<version>${tomcat.version}</version>
<scope>provided</scope>
</dependency>
<dependency>
<groupId>org.apache.tomcat.embed</groupId>
<artifactId>tomcat-embed-jasper</artifactId>
<version>${tomcat.version}</version>
<scope>provided</scope>
</dependency>
</dependencies>
</project>

其中,<packaging>类型仍然为war,引入依赖tomcat-embed-coretomcat-embed-jasper,引入的Tomcat版本<tomcat.version>10.1.1

不必引入Servlet API,因为引入Tomcat依赖后自动引入了Servlet API。因此,我们可以正常编写Servlet如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
@WebServlet(urlPatterns = "/")
public class HelloServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
resp.setContentType("text/html");
String name = req.getParameter("name");
if (name == null) {
name = "world";
}
PrintWriter pw = resp.getWriter();
pw.write("<h1>Hello, " + name + "!</h1>");
pw.flush();
}
}

然后,我们编写一个main()方法,启动Tomcat服务器:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class Main {
public static void main(String[] args) throws Exception {
// 启动Tomcat:
Tomcat tomcat = new Tomcat();
tomcat.setPort(Integer.getInteger("port", 8080));
tomcat.getConnector();
// 创建webapp:
Context ctx = tomcat.addWebapp("", new File("src/main/webapp").getAbsolutePath());
WebResourceRoot resources = new StandardRoot(ctx);
resources.addPreResources(
new DirResourceSet(resources, "/WEB-INF/classes", new File("target/classes").getAbsolutePath(), "/"));
ctx.setResources(resources);
tomcat.start();
tomcat.getServer().await();
}
}

这样,我们直接运行main()方法,即可启动嵌入式Tomcat服务器,然后,通过预设的tomcat.addWebapp("", new File("src/main/webapp"),Tomcat会自动加载当前工程作为根webapp,可直接在浏览器访问http://localhost:8080/

embedded-tomcat

通过main()方法启动Tomcat服务器并加载我们自己的webapp有如下好处:

  1. 启动简单,无需下载Tomcat或安装任何IDE插件;
  2. 调试方便,可在IDE中使用断点调试;
  3. 使用Maven创建war包后,也可以正常部署到独立的Tomcat服务器中。

生成可执行war包

如果要生成可执行的war包,用java -jar xxx.war启动,则需要把Tomcat的依赖项的<scope>去掉,然后配置maven-war-plugin如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
<project ...>
...
<build>
<finalName>hello</finalName>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-war-plugin</artifactId>
<version>3.3.2</version>
<configuration>
<!-- 复制classes到war包根目录 -->
<webResources>
<resource>
<directory>${project.build.directory}/classes</directory>
</resource>
</webResources>
<archiveClasses>true</archiveClasses>
<archive>
<manifest>
<!-- 添加Class-Path -->
<addClasspath>true</addClasspath>
<!-- Classpath前缀 -->
<classpathPrefix>tmp-webapp/WEB-INF/lib/</classpathPrefix>
<!-- main启动类 -->
<mainClass>com.itranswarp.learnjava.Main</mainClass>
</manifest>
</archive>
</configuration>
</plugin>
</plugins>
</build>
</project>

生成的war包结构如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
hello.war
├── META-INF
│   ├── MANIFEST.MF
│   └── maven
│   └── ...
├── WEB-INF
│   ├── classes
│   ├── lib
│   │   ├── ecj-3.18.0.jar
│   │   ├── tomcat-annotations-api-10.1.1.jar
│   │   ├── tomcat-embed-core-10.1.1.jar
│   │   ├── tomcat-embed-el-10.1.1.jar
│   │   ├── tomcat-embed-jasper-10.1.1.jar
│   │   └── web-servlet-embedded-1.0-SNAPSHOT.jar
│   └── web.xml
└── com
└── itranswarp
└── learnjava
├── Main.class
├── TomcatRunner.class
└── servlet
└── HelloServlet.class

之所以要把编译后的classes复制到war包根目录,是因为用java -jar hello.war启动时,JVM的Class Loader不会查找WEB-INF/lib的jar包,而是直接从hello.war的根目录查找。MANIFEST.MF生成的内容如下:

1
2
3
4
5
Main-Class: com.itranswarp.learnjava.Main
Class-Path: tmp-webapp/WEB-INF/lib/tomcat-embed-core-10.1.1.jar tmp-weba
pp/WEB-INF/lib/tomcat-annotations-api-10.1.1.jar tmp-webapp/WEB-INF/lib
/tomcat-embed-jasper-10.1.1.jar tmp-webapp/WEB-INF/lib/tomcat-embed-el-
10.1.1.jar tmp-webapp/WEB-INF/lib/ecj-3.18.0.jar

注意到Class-Path的路径,这里定义的Class-Path相当于java -cp指定的Classpath,JVM不会在一个jar包中查找jar包内的jar包,它只会在文件系统中搜索,因此,我们要修改main()方法,在执行main()方法时,先自解压war包,再启动Tomcat:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
public class Main {
public static void main(String[] args) throws Exception {
// 判定是否从jar/war启动:
String jarFile = Main.class.getProtectionDomain().getCodeSource().getLocation().getFile();
boolean isJarFile = jarFile.endsWith(".war") || jarFile.endsWith(".jar");
// 定位webapp根目录:
String webDir = isJarFile ? "tmp-webapp" : "src/main/webapp";
if (isJarFile) {
// 解压到tmp-webapp:
Path baseDir = Paths.get(webDir).normalize().toAbsolutePath();
if (Files.isDirectory(baseDir)) {
Files.delete(baseDir);
}
Files.createDirectories(baseDir);
System.out.println("extract to: " + baseDir);
try (JarFile jar = new JarFile(jarFile)) {
List<JarEntry> entries = jar.stream().sorted(Comparator.comparing(JarEntry::getName))
.collect(Collectors.toList());
for (JarEntry entry : entries) {
Path res = baseDir.resolve(entry.getName());
if (!entry.isDirectory()) {
System.out.println(res);
Files.createDirectories(res.getParent());
Files.copy(jar.getInputStream(entry), res);
}
}
}
// JVM退出时自动删除tmp-webapp:
Runtime.getRuntime().addShutdownHook(new Thread(() -> {
try {
Files.walk(baseDir).sorted(Comparator.reverseOrder()).map(Path::toFile).forEach(File::delete);
} catch (IOException e) {
e.printStackTrace();
}
}));
}
// 启动Tomcat:
TomcatRunner.run(webDir, isJarFile ? "tmp-webapp" : "target/classes");
}
}

// Tomcat启动类:
class TomcatRunner {
public static void run(String webDir, String baseDir) throws Exception {
Tomcat tomcat = new Tomcat();
tomcat.setPort(Integer.getInteger("port", 8080));
tomcat.getConnector();
Context ctx = tomcat.addWebapp("", new File(webDir).getAbsolutePath());
WebResourceRoot resources = new StandardRoot(ctx);
resources.addPreResources(new DirResourceSet(resources, "/WEB-INF/classes", new File(baseDir).getAbsolutePath(), "/"));
ctx.setResources(resources);
tomcat.start();
tomcat.getServer().await();
}
}

现在,执行java -jar hello.war时,JVM先定位hello.warMain类,运行main(),自动解压后,文件系统目录如下:

1
2
3
4
5
6
7
8
9
10
11
12
<work>
├── hello.war
└── tmp-webapp
   └── WEB-INF
   ├── lib
   │   ├── ecj-3.18.0.jar
   │   ├── tomcat-annotations-api-10.1.1.jar
   │   ├── tomcat-embed-core-10.1.1.jar
   │   ├── tomcat-embed-el-10.1.1.jar
   │   ├── tomcat-embed-jasper-10.1.1.jar
   │   └── web-servlet-embedded-1.0-SNAPSHOT.jar
   └── web.xml

解压后的目录结构和我们在MANIFEST.MF中设定的Class-Path一致,因此,JVM能顺利加载Tomcat的jar包,然后运行Tomcat,启动Web App。

编写可执行的jar或者war需要注意的几点:

  • 必须在MANIFEST.MF中指定Main-ClassClass-Path
  • Main必须能在jar/war包的根目录下被JVM的Class Loader加载;
  • Main负责解压jar/war,解压后的目录结构与MANIFEST.MF中设定的Class-Path一致;
  • Main不能引用任何解压后才能被加载的类,例如org.apache.catalina.startup.Tomcat

对SpringBoot有所了解的童鞋可能知道,SpringBoot也支持在main()方法中一行代码直接启动Tomcat,并且还能方便地更换成Jetty等其他服务器。它的启动方式和我们介绍的是基本一样的,后续涉及到SpringBoot的部分我们还会详细讲解。

练习

使用嵌入式Tomcat运行Servlet。

下载练习

注意:引入的Tomcat的scope为provided,在Idea下运行时,需要设置Run/Debug Configurations,选择Application - Main,钩上Include dependencies with "Provided" scope,这样才能让Idea在运行时把Tomcat相关依赖包自动添加到classpath中。

小结

开发Servlet时,推荐使用main()方法启动嵌入式Tomcat服务器并加载当前工程的webapp,便于开发调试,且不影响打包部署,能极大地提升开发效率。

一个Web App就是由一个或多个Servlet组成的,每个Servlet通过注解说明自己能处理的路径。例如:

1
2
3
4
@WebServlet(urlPatterns = "/hello")
public class HelloServlet extends HttpServlet {
...
}

上述HelloServlet能处理/hello这个路径的请求。

提示

早期的Servlet需要在web.xml中配置映射路径,但最新Servlet版本只需要通过注解就可以完成映射。

因为浏览器发送请求的时候,还会有请求方法(HTTP Method):即GETPOSTPUT等不同类型的请求。因此,要处理GET请求,我们要覆写doGet()方法:

1
2
3
4
5
6
7
@WebServlet(urlPatterns = "/hello")
public class HelloServlet extends HttpServlet {
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
...
}
}

类似的,要处理POST请求,就需要覆写doPost()方法。

如果没有覆写doPost()方法,那么HelloServlet能不能处理POST /hello请求呢?

我们查看一下HttpServletdoPost()方法就一目了然了:它会直接返回405或400错误。因此,一个Servlet如果映射到/hello,那么所有请求方法都会由这个Servlet处理,至于能不能返回200成功响应,要看有没有覆写对应的请求方法。

一个Webapp完全可以有多个Servlet,分别映射不同的路径。例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
@WebServlet(urlPatterns = "/hello")
public class HelloServlet extends HttpServlet {
...
}

@WebServlet(urlPatterns = "/signin")
public class SignInServlet extends HttpServlet {
...
}

@WebServlet(urlPatterns = "/")
public class IndexServlet extends HttpServlet {
...
}

浏览器发出的HTTP请求总是由Web Server先接收,然后,根据Servlet配置的映射,不同的路径转发到不同的Servlet:

1
2
3
4
5
6
7
8
9
10
11
12
13
               ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐

│ /hello ┌───────────────┐│
┌──────────▶│ HelloServlet │
│ │ └───────────────┘│
┌───────┐ ┌──────────┐ │ /signin ┌───────────────┐
│Browser│───▶│Dispatcher│─┼──────────▶│ SignInServlet ││
└───────┘ └──────────┘ │ └───────────────┘
│ │ / ┌───────────────┐│
└──────────▶│ IndexServlet │
│ └───────────────┘│
Web Server
└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘

这种根据路径转发的功能我们一般称为dispatch。映射到/IndexServlet比较特殊,它实际上会接收所有未匹配的路径,相当于/*,因为Dispatcher的逻辑可以用伪代码实现如下:

1
2
3
4
5
6
7
8
9
String path = ...
if (path.equals("/hello")) {
dispatchTo(helloServlet);
} else if (path.equals("/signin")) {
dispatchTo(signinServlet);
} else {
// 所有未匹配的路径均转发到"/"
dispatchTo(indexServlet);
}

所以我们在浏览器输入一个http://localhost:8080/abc也会看到IndexServlet生成的页面。

HttpServletRequest

HttpServletRequest封装了一个HTTP请求,它实际上是从ServletRequest继承而来。最早设计Servlet时,设计者希望Servlet不仅能处理HTTP,也能处理类似SMTP等其他协议,因此,单独抽出了ServletRequest接口,但实际上除了HTTP外,并没有其他协议会用Servlet处理,所以这是一个过度设计。

我们通过HttpServletRequest提供的接口方法可以拿到HTTP请求的几乎全部信息,常用的方法有:

  • getMethod():返回请求方法,例如,"GET""POST"
  • getRequestURI():返回请求路径,但不包括请求参数,例如,"/hello"
  • getQueryString():返回请求参数,例如,"name=Bob&a=1&b=2"
  • getParameter(name):返回请求参数,GET请求从URL读取参数,POST请求从Body中读取参数;
  • getContentType():获取请求Body的类型,例如,"application/x-www-form-urlencoded"
  • getContextPath():获取当前Webapp挂载的路径,对于ROOT来说,总是返回空字符串""
  • getCookies():返回请求携带的所有Cookie;
  • getHeader(name):获取指定的Header,对Header名称不区分大小写;
  • getHeaderNames():返回所有Header名称;
  • getInputStream():如果该请求带有HTTP Body,该方法将打开一个输入流用于读取Body;
  • getReader():和getInputStream()类似,但打开的是Reader;
  • getRemoteAddr():返回客户端的IP地址;
  • getScheme():返回协议类型,例如,"http""https"

此外,HttpServletRequest还有两个方法:setAttribute()getAttribute(),可以给当前HttpServletRequest对象附加多个Key-Value,相当于把HttpServletRequest当作一个Map<String, Object>使用。

调用HttpServletRequest的方法时,注意务必阅读接口方法的文档说明,因为有的方法会返回null,例如getQueryString()的文档就写了:

1
... This method returns null if the URL does not have a query string...

HttpServletResponse

HttpServletResponse封装了一个HTTP响应。由于HTTP响应必须先发送Header,再发送Body,所以,操作HttpServletResponse对象时,必须先调用设置Header的方法,最后调用发送Body的方法。

常用的设置Header的方法有:

  • setStatus(sc):设置响应代码,默认是200
  • setContentType(type):设置Body的类型,例如,"text/html"
  • setCharacterEncoding(charset):设置字符编码,例如,"UTF-8"
  • setHeader(name, value):设置一个Header的值;
  • addCookie(cookie):给响应添加一个Cookie;
  • addHeader(name, value):给响应添加一个Header,因为HTTP协议允许有多个相同的Header;

写入响应时,需要通过getOutputStream()获取写入流,或者通过getWriter()获取字符流,二者只能获取其中一个。

写入响应前,无需设置setContentLength(),因为底层服务器会根据写入的字节数自动设置,如果写入的数据量很小,实际上会先写入缓冲区,如果写入的数据量很大,服务器会自动采用Chunked编码让浏览器能识别数据结束符而不需要设置Content-Length头。

但是,写入完毕后调用flush()却是必须的,因为大部分Web服务器都基于HTTP/1.1协议,会复用TCP连接。如果没有调用flush(),将导致缓冲区的内容无法及时发送到客户端。此外,写入完毕后千万不要调用close(),原因同样是因为会复用TCP连接,如果关闭写入流,将关闭TCP连接,使得Web服务器无法复用此TCP连接。

注意

写入完毕后对输出流调用flush()而不是close()方法!

有了HttpServletRequestHttpServletResponse这两个高级接口,我们就不需要直接处理HTTP协议。注意到具体的实现类是由各服务器提供的,而我们编写的Web应用程序只关心接口方法,并不需要关心具体实现的子类。

Servlet多线程模型

一个Servlet类在服务器中只有一个实例,但对于每个HTTP请求,Web服务器会使用多线程执行请求。因此,一个Servlet的doGet()doPost()等处理请求的方法是多线程并发执行的。如果Servlet中定义了字段,要注意多线程并发访问的问题:

1
2
3
4
5
6
7
8
public class HelloServlet extends HttpServlet {
private Map<String, String> map = new ConcurrentHashMap<>();

protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
// 注意读写map字段是多线程并发的:
this.map.put(key, value);
}
}

对于每个请求,Web服务器会创建唯一的HttpServletRequestHttpServletResponse实例,因此,HttpServletRequestHttpServletResponse实例只有在当前处理线程中有效,它们总是局部变量,不存在多线程共享的问题。

小结

一个Webapp中的多个Servlet依靠路径映射来处理不同的请求;

映射为/的Servlet可处理所有“未匹配”的请求;

如何处理请求取决于Servlet覆写的对应方法;

Web服务器通过多线程处理HTTP请求,一个Servlet的处理方法可以由多线程并发执行。

Redirect

重定向是指当浏览器请求一个URL时,服务器返回一个重定向指令,告诉浏览器地址已经变了,麻烦使用新的URL再重新发送新请求。

例如,我们已经编写了一个能处理/helloHelloServlet,如果收到的路径为/hi,希望能重定向到/hello,可以再编写一个RedirectServlet

1
2
3
4
5
6
7
8
9
10
@WebServlet(urlPatterns = "/hi")
public class RedirectServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
// 构造重定向的路径:
String name = req.getParameter("name");
String redirectToUrl = "/hello" + (name == null ? "" : "?name=" + name);
// 发送重定向响应:
resp.sendRedirect(redirectToUrl);
}
}

如果浏览器发送GET /hi请求,RedirectServlet将处理此请求。由于RedirectServlet在内部又发送了重定向响应,因此,浏览器会收到如下响应:

1
2
HTTP/1.1 302 Found
Location: /hello

当浏览器收到302响应后,它会立刻根据Location的指示发送一个新的GET /hello请求,这个过程就是重定向:

1
2
3
4
5
6
7
8
9
10
┌───────┐   GET /hi     ┌───────────────┐
│Browser│ ────────────▶ │RedirectServlet│
│ │ ◀──────────── │ │
└───────┘ 302 └───────────────┘


┌───────┐ GET /hello ┌───────────────┐
│Browser│ ────────────▶ │ HelloServlet │
│ │ ◀──────────── │ │
└───────┘ 200 <html> └───────────────┘

观察Chrome浏览器的网络请求,可以看到两次HTTP请求:

redirect

并且浏览器的地址栏路径自动更新为/hello

重定向有两种:一种是302响应,称为临时重定向,一种是301响应,称为永久重定向。两者的区别是,如果服务器发送301永久重定向响应,浏览器会缓存/hi/hello这个重定向的关联,下次请求/hi的时候,浏览器就直接发送/hello请求了。

重定向有什么作用?重定向的目的是当Web应用升级后,如果请求路径发生了变化,可以将原来的路径重定向到新路径,从而避免浏览器请求原路径找不到资源。

HttpServletResponse提供了快捷的redirect()方法实现302重定向。如果要实现301永久重定向,可以这么写:

1
2
resp.setStatus(HttpServletResponse.SC_MOVED_PERMANENTLY); // 301
resp.setHeader("Location", "/hello");

Forward

Forward是指内部转发。当一个Servlet处理请求的时候,它可以决定自己不继续处理,而是转发给另一个Servlet处理。

例如,我们已经编写了一个能处理/helloHelloServlet,继续编写一个能处理/morningForwardServlet

1
2
3
4
5
6
@WebServlet(urlPatterns = "/morning")
public class ForwardServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
req.getRequestDispatcher("/hello").forward(req, resp);
}
}

ForwardServlet在收到请求后,它并不自己发送响应,而是把请求和响应都转发给路径为/hello的Servlet,即下面的代码:

1
req.getRequestDispatcher("/hello").forward(req, resp);

后续请求的处理实际上是由HelloServlet完成的。这种处理方式称为转发(Forward),我们用流程图画出来如下:

1
2
3
4
5
6
7
8
9
10
11
                          ┌────────────────────────┐
│ ┌───────────────┐ │
│ ────▶│ForwardServlet │ │
┌───────┐ GET /morning │ └───────────────┘ │
│Browser│ ──────────────▶ │ │ │
│ │ ◀────────────── │ ▼ │
└───────┘ 200 <html> │ ┌───────────────┐ │
│ ◀────│ HelloServlet │ │
│ └───────────────┘ │
│ Web Server │
└────────────────────────┘

转发和重定向的区别在于,转发是在Web服务器内部完成的,对浏览器来说,它只发出了一个HTTP请求:

forward

注意到使用转发的时候,浏览器的地址栏路径仍然是/morning,浏览器并不知道该请求在Web服务器内部实际上做了一次转发。

练习

在Servlet中使用重定向和转发。

下载练习

小结

使用重定向时,浏览器知道重定向规则,并且会自动发起新的HTTP请求;

使用转发时,浏览器并不知道服务器内部的转发逻辑。

在Web应用程序中,我们经常要跟踪用户身份。当一个用户登录成功后,如果他继续访问其他页面,Web程序如何才能识别出该用户身份?

因为HTTP协议是一个无状态协议,即Web应用程序无法区分收到的两个HTTP请求是否是同一个浏览器发出的。为了跟踪用户状态,服务器可以向浏览器分配一个唯一ID,并以Cookie的形式发送到浏览器,浏览器在后续访问时总是附带此Cookie,这样,服务器就可以识别用户身份。

Session

我们把这种基于唯一ID识别用户身份的机制称为Session。每个用户第一次访问服务器后,会自动获得一个Session ID。如果用户在一段时间内没有访问服务器,那么Session会自动失效,下次即使带着上次分配的Session ID访问,服务器也认为这是一个新用户,会分配新的Session ID。

JavaEE的Servlet机制内建了对Session的支持。我们以登录为例,当一个用户登录成功后,我们就可以把这个用户的名字放入一个HttpSession对象,以便后续访问其他页面的时候,能直接从HttpSession取出用户名:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
@WebServlet(urlPatterns = "/signin")
public class SignInServlet extends HttpServlet {
// 模拟一个数据库:
private Map<String, String> users = Map.of("bob", "bob123", "alice", "alice123", "tom", "tomcat");

// GET请求时显示登录页:
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
resp.setContentType("text/html");
PrintWriter pw = resp.getWriter();
pw.write("<h1>Sign In</h1>");
pw.write("<form action=\"/signin\" method=\"post\">");
pw.write("<p>Username: <input name=\"username\"></p>");
pw.write("<p>Password: <input name=\"password\" type=\"password\"></p>");
pw.write("<p><button type=\"submit\">Sign In</button> <a href=\"/\">Cancel</a></p>");
pw.write("</form>");
pw.flush();
}

// POST请求时处理用户登录:
protected void doPost(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
String name = req.getParameter("username");
String password = req.getParameter("password");
String expectedPassword = users.get(name.toLowerCase());
if (expectedPassword != null && expectedPassword.equals(password)) {
// 登录成功:
req.getSession().setAttribute("user", name);
resp.sendRedirect("/");
} else {
resp.sendError(HttpServletResponse.SC_FORBIDDEN);
}
}
}

上述SignInServlet在判断用户登录成功后,立刻将用户名放入当前HttpSession中:

1
2
HttpSession session = req.getSession();
session.setAttribute("user", name);

IndexServlet中,可以从HttpSession取出用户名:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@WebServlet(urlPatterns = "/")
public class IndexServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
// 从HttpSession获取当前用户名:
String user = (String) req.getSession().getAttribute("user");
resp.setContentType("text/html");
resp.setCharacterEncoding("UTF-8");
resp.setHeader("X-Powered-By", "JavaEE Servlet");
PrintWriter pw = resp.getWriter();
pw.write("<h1>Welcome, " + (user != null ? user : "Guest") + "</h1>");
if (user == null) {
// 未登录,显示登录链接:
pw.write("<p><a href=\"/signin\">Sign In</a></p>");
} else {
// 已登录,显示登出链接:
pw.write("<p><a href=\"/signout\">Sign Out</a></p>");
}
pw.flush();
}
}

如果用户已登录,可以通过访问/signout登出。登出逻辑就是从HttpSession中移除用户相关信息:

1
2
3
4
5
6
7
8
@WebServlet(urlPatterns = "/signout")
public class SignOutServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
// 从HttpSession移除用户名:
req.getSession().removeAttribute("user");
resp.sendRedirect("/");
}
}

对于Web应用程序来说,我们总是通过HttpSession这个高级接口访问当前Session。如果要深入理解Session原理,可以认为Web服务器在内存中自动维护了一个ID到HttpSession的映射表,我们可以用下图表示:

1
2
3
4
5
6
7
8
9
10
11
12
13
           ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐

│ ┌───────────────┐ │
┌───▶│ IndexServlet │◀──────────┐
│ │ └───────────────┘ ▼ │
┌───────┐ │ ┌───────────────┐ ┌────────┐
│Browser│──┼─┼───▶│ SignInServlet │◀────▶│Sessions││
└───────┘ │ └───────────────┘ └────────┘
│ │ ┌───────────────┐ ▲ │
└───▶│SignOutServlet │◀──────────┘
│ └───────────────┘ │

└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘

而服务器识别Session的关键就是依靠一个名为JSESSIONID的Cookie。在Servlet中第一次调用req.getSession()时,Servlet容器自动创建一个Session ID,然后通过一个名为JSESSIONID的Cookie发送给浏览器:

session

这里要注意的几点是:

  • JSESSIONID是由Servlet容器自动创建的,目的是维护一个浏览器会话,它和我们的登录逻辑没有关系;
  • 登录和登出的业务逻辑是我们自己根据HttpSession是否存在一个"user"的Key判断的,登出后,Session ID并不会改变;
  • 即使没有登录功能,仍然可以使用HttpSession追踪用户,例如,放入一些用户配置信息等。

除了使用Cookie机制可以实现Session外,还可以通过隐藏表单、URL末尾附加ID来追踪Session。这些机制很少使用,最常用的Session机制仍然是Cookie。

使用Session时,由于服务器把所有用户的Session都存储在内存中,如果遇到内存不足的情况,就需要把部分不活动的Session序列化到磁盘上,这会大大降低服务器的运行效率,因此,放入Session的对象要小,通常我们放入一个简单的User对象就足够了:

1
2
3
4
5
public class User {
public long id; // 唯一标识
public String email;
public String name;
}

在使用多台服务器构成集群时,使用Session会遇到一些额外的问题。通常,多台服务器集群使用反向代理作为网站入口:

1
2
3
4
5
6
7
8
9
                                     ┌────────────┐
┌───▶│Web Server 1│
│ └────────────┘
┌───────┐ ┌─────────────┐ │ ┌────────────┐
│Browser│────▶│Reverse Proxy│───┼───▶│Web Server 2│
└───────┘ └─────────────┘ │ └────────────┘
│ ┌────────────┐
└───▶│Web Server 3│
└────────────┘

如果多台Web Server采用无状态集群,那么反向代理总是以轮询方式将请求依次转发给每台Web Server,这会造成一个用户在Web Server 1存储的Session信息,在Web Server 2和3上并不存在,即从Web Server 1登录后,如果后续请求被转发到Web Server 2或3,那么用户看到的仍然是未登录状态。

要解决这个问题,方案一是在所有Web Server之间进行Session复制,但这样会严重消耗网络带宽,并且,每个Web Server的内存均存储所有用户的Session,内存使用率很低。

另一个方案是采用粘滞会话(Sticky Session)机制,即反向代理在转发请求的时候,总是根据JSESSIONID的值判断,相同的JSESSIONID总是转发到固定的Web Server,但这需要反向代理的支持。

无论采用何种方案,使用Session机制,会使得Web Server的集群很难扩展,因此,Session适用于中小型Web应用程序。对于大型Web应用程序来说,通常需要避免使用Session机制。

实际上,Servlet提供的HttpSession本质上就是通过一个名为JSESSIONID的Cookie来跟踪用户会话的。除了这个名称外,其他名称的Cookie我们可以任意使用。

如果我们想要设置一个Cookie,例如,记录用户选择的语言,可以编写一个LanguageServlet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
@WebServlet(urlPatterns = "/pref")
public class LanguageServlet extends HttpServlet {

private static final Set<String> LANGUAGES = Set.of("en", "zh");

protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
String lang = req.getParameter("lang");
if (LANGUAGES.contains(lang)) {
// 创建一个新的Cookie:
Cookie cookie = new Cookie("lang", lang);
// 该Cookie生效的路径范围:
cookie.setPath("/");
// 该Cookie有效期:
cookie.setMaxAge(8640000); // 8640000秒=100天
// 将该Cookie添加到响应:
resp.addCookie(cookie);
}
resp.sendRedirect("/");
}
}

创建一个新Cookie时,除了指定名称和值以外,通常需要设置setPath("/"),浏览器根据此前缀决定是否发送Cookie。如果一个Cookie调用了setPath("/user/"),那么浏览器只有在请求以/user/开头的路径时才会附加此Cookie。通过setMaxAge()设置Cookie的有效期,单位为秒,最后通过resp.addCookie()把它添加到响应。

如果访问的是https网页,还需要调用setSecure(true),否则浏览器不会发送该Cookie。

因此,务必注意:浏览器在请求某个URL时,是否携带指定的Cookie,取决于Cookie是否满足以下所有要求:

  • URL前缀是设置Cookie时的Path;
  • Cookie在有效期内;
  • Cookie设置了secure时必须以https访问。

我们可以在浏览器看到服务器发送的Cookie:

cookie

如果我们要读取Cookie,例如,在IndexServlet中,读取名为lang的Cookie以获取用户设置的语言,可以写一个方法如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
private String parseLanguageFromCookie(HttpServletRequest req) {
// 获取请求附带的所有Cookie:
Cookie[] cookies = req.getCookies();
// 如果获取到Cookie:
if (cookies != null) {
// 循环每个Cookie:
for (Cookie cookie : cookies) {
// 如果Cookie名称为lang:
if (cookie.getName().equals("lang")) {
// 返回Cookie的值:
return cookie.getValue();
}
}
}
// 返回默认值:
return "en";
}

可见,读取Cookie主要依靠遍历HttpServletRequest附带的所有Cookie。

练习

在Servlet中使用Session和Cookie。

下载练习

小结

Servlet容器提供了Session机制以跟踪用户;

默认的Session机制是以Cookie形式实现的,Cookie名称为JSESSIONID

通过读写Cookie可以在客户端设置用户偏好等。

我们从前面的章节可以看到,Servlet就是一个能处理HTTP请求,发送HTTP响应的小程序,而发送响应无非就是获取PrintWriter,然后输出HTML:

1
2
3
4
5
6
7
PrintWriter pw = resp.getWriter();
pw.write("<html>");
pw.write("<body>");
pw.write("<h1>Welcome, " + name + "!</h1>");
pw.write("</body>");
pw.write("</html>");
pw.flush();

只不过,用PrintWriter输出HTML比较痛苦,因为不但要正确编写HTML,还需要插入各种变量。如果想在Servlet中输出一个类似新浪首页的HTML,写对HTML基本上不太可能。

那有没有更简单的输出HTML的办法?

有!

我们可以使用JSP。

JSP是Java Server Pages的缩写,它的文件必须放到/src/main/webapp下,文件名必须以.jsp结尾,整个文件与HTML并无太大区别,但需要插入变量,或者动态输出的地方,使用特殊指令<% ... %>

我们来编写一个hello.jsp,内容如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
<html>
<head>
<title>Hello World - JSP</title>
</head>
<body>
<%-- JSP Comment --%>
<h1>Hello World!</h1>
<p>
<%
out.println("Your IP address is ");
%>
<span style="color:red">
<%= request.getRemoteAddr() %>
</span>
</p>
</body>
</html>

整个JSP的内容实际上是一个HTML,但是稍有不同:

  • 包含在<%----%>之间的是JSP的注释,它们会被完全忽略;
  • 包含在<%%>之间的是Java代码,可以编写任意Java代码;
  • 如果使用<%= xxx %>则可以快捷输出一个变量的值。

JSP页面内置了几个变量:

  • out:表示HttpServletResponse的PrintWriter;
  • session:表示当前HttpSession对象;
  • request:表示HttpServletRequest对象。

这几个变量可以直接使用。

访问JSP页面时,直接指定完整路径。例如,http://localhost:8080/hello.jsp,浏览器显示如下:

jsp

JSP和Servlet有什么区别?其实它们没有任何区别,因为JSP在执行前首先被编译成一个Servlet。在Tomcat的临时目录下,可以找到一个hello_jsp.java的源文件,这个文件就是Tomcat把JSP自动转换成的Servlet源码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
package org.apache.jsp;
import ...

public final class hello_jsp extends org.apache.jasper.runtime.HttpJspBase
implements org.apache.jasper.runtime.JspSourceDependent,
org.apache.jasper.runtime.JspSourceImports {

...

public void _jspService(final javax.servlet.http.HttpServletRequest request, final javax.servlet.http.HttpServletResponse response)
throws java.io.IOException, javax.servlet.ServletException {
...
out.write("<html>\n");
out.write("<head>\n");
out.write(" <title>Hello World - JSP</title>\n");
out.write("</head>\n");
out.write("<body>\n");
...
}
...
}

可见JSP本质上就是一个Servlet,只不过无需配置映射路径,Web Server会根据路径查找对应的.jsp文件,如果找到了,就自动编译成Servlet再执行。在服务器运行过程中,如果修改了JSP的内容,那么服务器会自动重新编译。

JSP高级功能

JSP的指令非常复杂,除了<% ... %>外,JSP页面本身可以通过page指令引入Java类:

1
2
<%@ page import="java.io.*" %>
<%@ page import="java.util.*" %>

这样后续的Java代码才能引用简单类名而不是完整类名。

使用include指令可以引入另一个JSP文件:

1
2
3
4
5
6
<html>
<body>
<%@ include file="header.jsp"%>
<h1>Index Page</h1>
<%@ include file="footer.jsp"%>
</body>

JSP Tag

JSP还允许自定义输出的tag,例如:

1
<c:out value = "${sessionScope.user.name}"/>

JSP Tag需要正确引入taglib的jar包,并且还需要正确声明,使用起来非常复杂,对于页面开发来说,不推荐使用JSP Tag,因为我们后续会介绍更简单的模板引擎,这里我们不再介绍如何使用taglib。

练习

编写一个简单的JSP文件,输出当前日期和时间。

下载练习

小结

JSP是一种在HTML中嵌入动态输出的文件,它和Servlet正好相反,Servlet是在Java代码中嵌入输出HTML;

JSP可以引入并使用JSP Tag,但由于其语法复杂,不推荐使用;

JSP本身目前已经很少使用,我们只需要了解其基本用法即可。

MVC开发

我们通过前面的章节可以看到:

  • Servlet适合编写Java代码,实现各种复杂的业务逻辑,但不适合输出复杂的HTML;
  • JSP适合编写HTML,并在其中插入动态内容,但不适合编写复杂的Java代码。

能否将两者结合起来,发挥各自的优点,避免各自的缺点?

答案是肯定的。我们来看一个具体的例子。

假设我们已经编写了几个JavaBean:

1
2
3
4
5
6
7
8
9
10
public class User {
public long id;
public String name;
public School school;
}

public class School {
public String name;
public String address;
}

UserServlet中,我们可以从数据库读取UserSchool等信息,然后,把读取到的JavaBean先放到HttpServletRequest中,再通过forward()传给user.jsp处理:

1
2
3
4
5
6
7
8
9
10
11
12
@WebServlet(urlPatterns = "/user")
public class UserServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
// 假装从数据库读取:
School school = new School("No.1 Middle School", "101 South Street");
User user = new User(123, "Bob", school);
// 放入Request中:
req.setAttribute("user", user);
// forward给user.jsp:
req.getRequestDispatcher("/WEB-INF/user.jsp").forward(req, resp);
}
}

user.jsp中,我们只负责展示相关JavaBean的信息,不需要编写访问数据库等复杂逻辑:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
<%@ page import="com.itranswarp.learnjava.bean.*"%>
<%
User user = (User) request.getAttribute("user");
%>
<html>
<head>
<title>Hello World - JSP</title>
</head>
<body>
<h1>Hello <%= user.name %>!</h1>
<p>School Name:
<span style="color:red">
<%= user.school.name %>
</span>
</p>
<p>School Address:
<span style="color:red">
<%= user.school.address %>
</span>
</p>
</body>
</html>

请注意几点:

  • 需要展示的User被放入HttpServletRequest中以便传递给JSP,因为一个请求对应一个HttpServletRequest,我们也无需清理它,处理完该请求后HttpServletRequest实例将被丢弃;
  • user.jsp放到/WEB-INF/目录下,是因为WEB-INF是一个特殊目录,Web Server会阻止浏览器对WEB-INF目录下任何资源的访问,这样就防止用户通过/user.jsp路径直接访问到JSP页面;
  • JSP页面首先从request变量获取User实例,然后在页面中直接输出,此处未考虑HTML的转义问题,有潜在安全风险。

我们在浏览器访问http://localhost:8080/user,请求首先由UserServlet处理,然后交给user.jsp渲染:

mvc

我们把UserServlet看作业务逻辑处理,把User看作模型,把user.jsp看作渲染,这种设计模式通常被称为MVC:Model-View-Controller,即UserServlet作为控制器(Controller),User作为模型(Model),user.jsp作为视图(View),整个MVC架构如下:

1
2
3
4
5
6
7
8
9
10
11
12
                   ┌───────────────────────┐
┌────▶│Controller: UserServlet│
│ └───────────────────────┘
│ │
┌───────┐ │ ┌─────┴─────┐
│Browser│────┘ │Model: User│
│ │◀───┐ └─────┬─────┘
└───────┘ │ │
│ ▼
│ ┌───────────────────────┐
└─────│ View: user.jsp │
└───────────────────────┘

使用MVC模式的好处是,Controller专注于业务处理,它的处理结果就是Model。Model可以是一个JavaBean,也可以是一个包含多个对象的Map,Controller只负责把Model传递给View,View只负责把Model给“渲染”出来,这样,三者职责明确,且开发更简单,因为开发Controller时无需关注页面,开发View时无需关心如何创建Model。

MVC模式广泛地应用在Web页面和传统的桌面程序中,我们在这里通过Servlet和JSP实现了一个简单的MVC模型,但它还不够简洁和灵活,后续我们会介绍更简单的Spring MVC开发。

练习

使用MVC开发。

下载练习

小结

MVC模式是一种分离业务逻辑和显示逻辑的设计模式,广泛应用在Web和桌面应用程序。



通过结合Servlet和JSP的MVC模式,我们可以发挥二者各自的优点:

  • Servlet实现业务逻辑;
  • JSP实现展示逻辑。

但是,直接把MVC搭在Servlet和JSP之上还是不太好,原因如下:

  • Servlet提供的接口仍然偏底层,需要实现Servlet调用相关接口;
  • JSP对页面开发不友好,更好的替代品是模板引擎;
  • 业务逻辑最好由纯粹的Java类实现,而不是强迫继承自Servlet。

能不能通过普通的Java类实现MVC的Controller?类似下面的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class UserController {
@GetMapping("/signin")
public ModelAndView signin() {
...
}

@PostMapping("/signin")
public ModelAndView doSignin(SignInBean bean) {
...
}

@GetMapping("/signout")
public ModelAndView signout(HttpSession session) {
...
}
}

上面的这个Java类每个方法都对应一个GET或POST请求,方法返回值是ModelAndView,它包含一个View的路径以及一个Model,这样,再由MVC框架处理后返回给浏览器。

如果是GET请求,我们希望MVC框架能直接把URL参数按方法参数对应起来然后传入:

1
2
3
4
@GetMapping("/hello")
public ModelAndView hello(String name) {
...
}

如果是POST请求,我们希望MVC框架能直接把Post参数变成一个JavaBean后通过方法参数传入:

1
2
3
4
@PostMapping("/signin")
public ModelAndView doSignin(SignInBean bean) {
...
}

为了增加灵活性,如果Controller的方法在处理请求时需要访问HttpServletRequestHttpServletResponseHttpSession这些实例时,只要方法参数有定义,就可以自动传入:

1
2
3
4
@GetMapping("/signout")
public ModelAndView signout(HttpSession session) {
...
}

以上就是我们在设计MVC框架时,上层代码所需要的一切信息。

设计MVC框架

如何设计一个MVC框架?在上文中,我们已经定义了上层代码编写Controller的一切接口信息,并且并不要求实现特定接口,只需返回ModelAndView对象,该对象包含一个View和一个Model。实际上View就是模板的路径,而Model可以用一个Map<String, Object>表示,因此,ModelAndView定义非常简单:

1
2
3
4
public class ModelAndView {
Map<String, Object> model;
String view;
}

比较复杂的是我们需要在MVC框架中创建一个接收所有请求的Servlet,通常我们把它命名为DispatcherServlet,它总是映射到/,然后,根据不同的Controller的方法定义的@Get@Post的Path决定调用哪个方法,最后,获得方法返回的ModelAndView后,渲染模板,写入HttpServletResponse,即完成了整个MVC的处理。

这个MVC的架构如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
   HTTP Request    ┌─────────────────┐
──────────────────▶│DispatcherServlet│
└─────────────────┘

┌────────────┼────────────┐
▼ ▼ ▼
┌───────────┐┌───────────┐┌───────────┐
│Controller1││Controller2││Controller3│
└───────────┘└───────────┘└───────────┘
│ │ │
└────────────┼────────────┘

HTTP Response ┌────────────────────┐
◀────────────────│render(ModelAndView)│
└────────────────────┘

其中,DispatcherServlet以及如何渲染均由MVC框架实现,在MVC框架之上只需要编写每一个Controller。

我们来看看如何编写最复杂的DispatcherServlet。首先,我们需要存储请求路径到某个具体方法的映射:

1
2
3
4
5
@WebServlet(urlPatterns = "/")
public class DispatcherServlet extends HttpServlet {
private Map<String, GetDispatcher> getMappings = new HashMap<>();
private Map<String, PostDispatcher> postMappings = new HashMap<>();
}

处理一个GET请求是通过GetDispatcher对象完成的,它需要如下信息:

1
2
3
4
5
6
class GetDispatcher {
Object instance; // Controller实例
Method method; // Controller方法
String[] parameterNames; // 方法参数名称
Class<?>[] parameterClasses; // 方法参数类型
}

有了以上信息,就可以定义invoke()来处理真正的请求:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class GetDispatcher {
...
public ModelAndView invoke(HttpServletRequest request, HttpServletResponse response) {
Object[] arguments = new Object[parameterClasses.length];
for (int i = 0; i < parameterClasses.length; i++) {
String parameterName = parameterNames[i];
Class<?> parameterClass = parameterClasses[i];
if (parameterClass == HttpServletRequest.class) {
arguments[i] = request;
} else if (parameterClass == HttpServletResponse.class) {
arguments[i] = response;
} else if (parameterClass == HttpSession.class) {
arguments[i] = request.getSession();
} else if (parameterClass == int.class) {
arguments[i] = Integer.valueOf(getOrDefault(request, parameterName, "0"));
} else if (parameterClass == long.class) {
arguments[i] = Long.valueOf(getOrDefault(request, parameterName, "0"));
} else if (parameterClass == boolean.class) {
arguments[i] = Boolean.valueOf(getOrDefault(request, parameterName, "false"));
} else if (parameterClass == String.class) {
arguments[i] = getOrDefault(request, parameterName, "");
} else {
throw new RuntimeException("Missing handler for type: " + parameterClass);
}
}
return (ModelAndView) this.method.invoke(this.instance, arguments);
}

private String getOrDefault(HttpServletRequest request, String name, String defaultValue) {
String s = request.getParameter(name);
return s == null ? defaultValue : s;
}
}

上述代码比较繁琐,但逻辑非常简单,即通过构造某个方法需要的所有参数列表,使用反射调用该方法后返回结果。

类似的,PostDispatcher需要如下信息:

1
2
3
4
5
6
class PostDispatcher {
Object instance; // Controller实例
Method method; // Controller方法
Class<?>[] parameterClasses; // 方法参数类型
ObjectMapper objectMapper; // JSON映射
}

和GET请求不同,POST请求严格地来说不能有URL参数,所有数据都应当从Post Body中读取。这里我们为了简化处理,只支持JSON格式的POST请求,这样,把Post数据转化为JavaBean就非常容易。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
class PostDispatcher {
...
public ModelAndView invoke(HttpServletRequest request, HttpServletResponse response) {
Object[] arguments = new Object[parameterClasses.length];
for (int i = 0; i < parameterClasses.length; i++) {
Class<?> parameterClass = parameterClasses[i];
if (parameterClass == HttpServletRequest.class) {
arguments[i] = request;
} else if (parameterClass == HttpServletResponse.class) {
arguments[i] = response;
} else if (parameterClass == HttpSession.class) {
arguments[i] = request.getSession();
} else {
// 读取JSON并解析为JavaBean:
BufferedReader reader = request.getReader();
arguments[i] = this.objectMapper.readValue(reader, parameterClass);
}
}
return (ModelAndView) this.method.invoke(instance, arguments);
}
}

最后,我们来实现整个DispatcherServlet的处理流程,以doGet()为例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public class DispatcherServlet extends HttpServlet {
...
@Override
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
resp.setContentType("text/html");
resp.setCharacterEncoding("UTF-8");
String path = req.getRequestURI().substring(req.getContextPath().length());
// 根据路径查找GetDispatcher:
GetDispatcher dispatcher = this.getMappings.get(path);
if (dispatcher == null) {
// 未找到返回404:
resp.sendError(404);
return;
}
// 调用Controller方法获得返回值:
ModelAndView mv = dispatcher.invoke(req, resp);
// 允许返回null:
if (mv == null) {
return;
}
// 允许返回`redirect:`开头的view表示重定向:
if (mv.view.startsWith("redirect:")) {
resp.sendRedirect(mv.view.substring(9));
return;
}
// 将模板引擎渲染的内容写入响应:
PrintWriter pw = resp.getWriter();
this.viewEngine.render(mv, pw);
pw.flush();
}
}

这里有几个小改进:

  • 允许Controller方法返回null,表示内部已自行处理完毕;
  • 允许Controller方法返回以redirect:开头的view名称,表示一个重定向。

这样使得上层代码编写更灵活。例如,一个显示用户资料的请求可以这样写:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
@GetMapping("/user/profile")
public ModelAndView profile(HttpServletResponse response, HttpSession session) {
User user = (User) session.getAttribute("user");
if (user == null) {
// 未登录,跳转到登录页:
return new ModelAndView("redirect:/signin");
}
if (!user.isManager()) {
// 权限不够,返回403:
response.sendError(403);
return null;
}
return new ModelAndView("/profile.html", Map.of("user", user));
}

最后一步是在DispatcherServletinit()方法中初始化所有Get和Post的映射,以及用于渲染的模板引擎:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class DispatcherServlet extends HttpServlet {
private Map<String, GetDispatcher> getMappings = new HashMap<>();
private Map<String, PostDispatcher> postMappings = new HashMap<>();
private ViewEngine viewEngine;

@Override
public void init() throws ServletException {
this.getMappings = scanGetInControllers();
this.postMappings = scanPostInControllers();
this.viewEngine = new ViewEngine(getServletContext());
}
...
}

如何扫描所有Controller以获取所有标记有@GetMapping@PostMapping的方法?当然是使用反射了。虽然代码比较繁琐,但我们相信各位童鞋可以轻松实现。

这样,整个MVC框架就搭建完毕。

实现渲染

有的童鞋对如何使用模板引擎进行渲染有疑问,即如何实现上述的ViewEngine?其实ViewEngine非常简单,只需要实现一个简单的render()方法:

1
2
3
4
5
6
7
8
9
10
public class ViewEngine {
public void render(ModelAndView mv, Writer writer) throws IOException {
String view = mv.view;
Map<String, Object> model = mv.model;
// 根据view找到模板文件:
Template template = getTemplateByPath(view);
// 渲染并写入Writer:
template.write(writer, model);
}
}

Java有很多开源的模板引擎,常用的有:

他们的用法都大同小异。这里我们推荐一个使用Jinja语法的模板引擎Pebble,它的特点是语法简单,支持模板继承,编写出来的模板类似:

1
2
3
4
5
6
7
8
9
<html>
<body>
<ul>
{% for user in users %}
<li><a href="{{ user.url }}">{{ user.username }}</a></li>
{% endfor %}
</ul>
</body>
</html>

即变量用{{ xxx }}表示,控制语句用{% xxx %}表示。

使用Pebble渲染只需要如下几行代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class ViewEngine {
private final PebbleEngine engine;

public ViewEngine(ServletContext servletContext) {
// 定义一个ServletLoader用于加载模板:
ServletLoader loader = new ServletLoader(servletContext);
// 模板编码:
loader.setCharset("UTF-8");
// 模板前缀,这里默认模板必须放在`/WEB-INF/templates`目录:
loader.setPrefix("/WEB-INF/templates");
// 模板后缀:
loader.setSuffix("");
// 创建Pebble实例:
this.engine = new PebbleEngine.Builder()
.autoEscaping(true) // 默认打开HTML字符转义,防止XSS攻击
.cacheActive(false) // 禁用缓存使得每次修改模板可以立刻看到效果
.loader(loader).build();
}

public void render(ModelAndView mv, Writer writer) throws IOException {
// 查找模板:
PebbleTemplate template = this.engine.getTemplate(mv.view);
// 渲染:
template.evaluate(writer, mv.model);
}
}

最后我们来看看整个工程的结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
web-mvc
├── pom.xml
└── src
└── main
├── java
│   └── com
│   └── itranswarp
│   └── learnjava
│   ├── Main.java
│   ├── bean
│   │   ├── SignInBean.java
│   │   └── User.java
│   ├── controller
│   │   ├── IndexController.java
│   │   └── UserController.java
│   └── framework
│   ├── DispatcherServlet.java
│   ├── FileServlet.java
│   ├── GetMapping.java
│   ├── ModelAndView.java
│   ├── PostMapping.java
│   └── ViewEngine.java
└── webapp
├── WEB-INF
│   ├── templates
│   │   ├── _base.html
│   │   ├── hello.html
│   │   ├── index.html
│   │   ├── profile.html
│   │   └── signin.html
│   └── web.xml
└── static
├── css
│   └── bootstrap.css
└── js
├── bootstrap.js
└── jquery.js

其中,framework包是MVC的框架,完全可以单独编译后作为一个Maven依赖引入,controller包才是我们需要编写的业务逻辑。

我们还硬性规定模板必须放在webapp/WEB-INF/templates目录下,静态文件必须放在webapp/static目录下,因此,为了便于开发,我们还顺带实现一个FileServlet来处理静态文件:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
@WebServlet(urlPatterns = { "/favicon.ico", "/static/*" })
public class FileServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
// 读取当前请求路径:
ServletContext ctx = req.getServletContext();
// RequestURI包含ContextPath,需要去掉:
String urlPath = req.getRequestURI().substring(ctx.getContextPath().length());
// 获取真实文件路径:
String filepath = ctx.getRealPath(urlPath);
if (filepath == null) {
// 无法获取到路径:
resp.sendError(HttpServletResponse.SC_NOT_FOUND);
return;
}
Path path = Paths.get(filepath);
if (!path.toFile().isFile()) {
// 文件不存在:
resp.sendError(HttpServletResponse.SC_NOT_FOUND);
return;
}
// 根据文件名猜测Content-Type:
String mime = Files.probeContentType(path);
if (mime == null) {
mime = "application/octet-stream";
}
resp.setContentType(mime);
// 读取文件并写入Response:
OutputStream output = resp.getOutputStream();
try (InputStream input = new BufferedInputStream(new FileInputStream(filepath))) {
input.transferTo(output);
}
output.flush();
}
}

运行代码,在浏览器中输入URLhttp://localhost:8080/hello?name=Bob可以看到如下页面:

mvc

为了把方法参数的名称编译到class文件中,以便处理@GetMapping时使用,我们需要打开编译器的一个参数,在Eclipse中勾选Preferences-Java-Compiler-Store information about method parameters (usable via reflection);在Idea中选择Preferences-Build, Execution, Deployment-Compiler-Java Compiler-Additional command line parameters,填入-parameters;在Maven的pom.xml添加一段配置如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
<project ...>
<modelVersion>4.0.0</modelVersion>
...
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-compiler-plugin</artifactId>
<configuration>
<compilerArgs>
<arg>-parameters</arg>
</compilerArgs>
</configuration>
</plugin>
</plugins>
</build>
</project>

有些用过Spring MVC的童鞋会发现,本节实现的这个MVC框架,上层代码使用的公共类如GetMappingPostMappingModelAndView都和Spring MVC非常类似。实际上,我们这个MVC框架主要参考就是Spring MVC,通过实现一个“简化版”MVC,可以掌握Java Web MVC开发的核心思想与原理,对将来直接使用Spring MVC是非常有帮助的。

练习

实现一个MVC框架。

下载练习

小结

一个MVC框架是基于Servlet基础抽象出更高级的接口,使得上层基于MVC框架的开发可以不涉及Servlet相关的HttpServletRequest等接口,处理多个请求更加灵活,并且可以使用任意模板引擎,不必使用JSP。

在一个比较复杂的Web应用程序中,通常都有很多URL映射,对应的,也会有多个Servlet来处理URL。

我们考察这样一个论坛应用程序:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
            ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐
/ ┌──────────────┐
│ ┌─────────────▶│ IndexServlet │ │
│ └──────────────┘
│ │/signin ┌──────────────┐ │
├─────────────▶│SignInServlet │
│ │ └──────────────┘ │
│/signout ┌──────────────┐
┌───────┐ │ ├─────────────▶│SignOutServlet│ │
│Browser├─────┤ └──────────────┘
└───────┘ │ │/user/profile ┌──────────────┐ │
├─────────────▶│ProfileServlet│
│ │ └──────────────┘ │
│/user/post ┌──────────────┐
│ ├─────────────▶│ PostServlet │ │
│ └──────────────┘
│ │/user/reply ┌──────────────┐ │
└─────────────▶│ ReplyServlet │
│ └──────────────┘ │
─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─

各个Servlet设计功能如下:

  • IndexServlet:浏览帖子;
  • SignInServlet:登录;
  • SignOutServlet:登出;
  • ProfileServlet:修改用户资料;
  • PostServlet:发帖;
  • ReplyServlet:回复。

其中,ProfileServlet、PostServlet和ReplyServlet都需要用户登录后才能操作,否则,应当直接跳转到登录页面。

我们可以直接把判断登录的逻辑写到这3个Servlet中,但是,同样的逻辑重复3次没有必要,并且,如果后续继续加Servlet并且也需要验证登录时,还需要继续重复这个检查逻辑。

为了把一些公用逻辑从各个Servlet中抽离出来,JavaEE的Servlet规范还提供了一种Filter组件,即过滤器,它的作用是,在HTTP请求到达Servlet之前,可以被一个或多个Filter预处理,类似打印日志、登录检查等逻辑,完全可以放到Filter中。

例如,我们编写一个最简单的EncodingFilter,它强制把输入和输出的编码设置为UTF-8:

1
2
3
4
5
6
7
8
9
10
@WebFilter(urlPatterns = "/*")
public class EncodingFilter implements Filter {
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {
System.out.println("EncodingFilter:doFilter");
request.setCharacterEncoding("UTF-8");
response.setCharacterEncoding("UTF-8");
chain.doFilter(request, response);
}
}

编写Filter时,必须实现Filter接口,在doFilter()方法内部,要继续处理请求,必须调用chain.doFilter()。最后,用@WebFilter注解标注该Filter需要过滤的URL。这里的/*表示所有路径。

添加了Filter之后,整个请求的处理架构如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
            ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐
/ ┌──────────────┐
│ ┌─────────────▶│ IndexServlet │ │
│ └──────────────┘
│ │/signin ┌──────────────┐ │
├─────────────▶│SignInServlet │
│ │ └──────────────┘ │
│/signout ┌──────────────┐
┌───────┐ │ ┌──────────────┐ ├─────────────▶│SignOutServlet│ │
│Browser│──────▶│EncodingFilter├──┤ └──────────────┘
└───────┘ │ └──────────────┘ │/user/profile ┌──────────────┐ │
├─────────────▶│ProfileServlet│
│ │ └──────────────┘ │
│/user/post ┌──────────────┐
│ ├─────────────▶│ PostServlet │ │
│ └──────────────┘
│ │/user/reply ┌──────────────┐ │
└─────────────▶│ ReplyServlet │
│ └──────────────┘ │
─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─

还可以继续添加其他Filter,例如LogFilter:

1
2
3
4
5
6
7
8
@WebFilter("/*")
public class LogFilter implements Filter {
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {
System.out.println("LogFilter: process " + ((HttpServletRequest) request).getRequestURI());
chain.doFilter(request, response);
}
}

多个Filter会组成一个链,每个请求都被链上的Filter依次处理:

1
2
3
4
5
6
7
8
9
                                        ┌────────┐
┌─▶│ServletA│
│ └────────┘
┌──────────────┐ ┌─────────┐ │ ┌────────┐
───▶│EncodingFilter│───▶│LogFilter│──┼─▶│ServletB│
└──────────────┘ └─────────┘ │ └────────┘
│ ┌────────┐
└─▶│ServletC│
└────────┘

有些细心的童鞋会问,有多个Filter的时候,Filter的顺序如何指定?多个Filter按不同顺序处理会造成处理结果不同吗?

答案是Filter的顺序确实对处理的结果有影响。但遗憾的是,Servlet规范并没有对@WebFilter注解标注的Filter规定顺序。如果一定要给每个Filter指定顺序,就必须在web.xml文件中对这些Filter再配置一遍。

注意到上述两个Filter的过滤路径都是/*,即它们会对所有请求进行过滤。也可以编写只对特定路径进行过滤的Filter,例如AuthFilter

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
@WebFilter("/user/*")
public class AuthFilter implements Filter {
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {
System.out.println("AuthFilter: check authentication");
HttpServletRequest req = (HttpServletRequest) request;
HttpServletResponse resp = (HttpServletResponse) response;
if (req.getSession().getAttribute("user") == null) {
// 未登录,自动跳转到登录页:
System.out.println("AuthFilter: not signin!");
resp.sendRedirect("/signin");
} else {
// 已登录,继续处理:
chain.doFilter(request, response);
}
}
}

注意到AuthFilter只过滤以/user/开头的路径,因此:

  • 如果一个请求路径类似/user/profile,那么它会被上述3个Filter依次处理;
  • 如果一个请求路径类似/test,那么它会被上述2个Filter依次处理(不会被AuthFilter处理)。

再注意观察AuthFilter,当用户没有登录时,在AuthFilter内部,直接调用resp.sendRedirect()发送重定向,且没有调用chain.doFilter(),因此,当用户没有登录时,请求到达AuthFilter后,不再继续处理,即后续的Filter和任何Servlet都没有机会处理该请求了。

可见,Filter可以有针对性地拦截或者放行HTTP请求。

如果一个Filter在当前请求中生效,但什么都没有做:

1
2
3
4
5
6
7
@WebFilter("/*")
public class MyFilter implements Filter {
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {
// TODO
}
}

那么,用户将看到一个空白页,因为请求没有继续处理,默认响应是200+空白输出。

注意

如果Filter要使请求继续被处理,就一定要调用chain.doFilter()!

如果我们使用上一节介绍的MVC模式,即一个统一的DispatcherServlet入口,加上多个Controller,这种模式下Filter仍然是正常工作的。例如,一个处理/user/*的Filter实际上作用于那些处理/user/开头的Controller方法之前。

小结

Filter是一种对HTTP请求进行预处理的组件,它可以构成一个处理链,使得公共处理代码能集中到一起;

Filter适用于日志、登录检查、全局设置等;

设计合理的URL映射可以让Filter链更清晰。

Filter可以对请求进行预处理,因此,我们可以把很多公共预处理逻辑放到Filter中完成。

考察这样一种需求:我们在Web应用中经常需要处理用户上传文件,例如,一个UploadServlet可以简单地编写如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
@WebServlet(urlPatterns = "/upload/file")
public class UploadServlet extends HttpServlet {
protected void doPost(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
// 读取Request Body:
InputStream input = req.getInputStream();
ByteArrayOutputStream output = new ByteArrayOutputStream();
byte[] buffer = new byte[1024];
for (;;) {
int len = input.read(buffer);
if (len == -1) {
break;
}
output.write(buffer, 0, len);
}
// TODO: 写入文件:
// 显示上传结果:
String uploadedText = output.toString(StandardCharsets.UTF_8);
PrintWriter pw = resp.getWriter();
pw.write("<h1>Uploaded:</h1>");
pw.write("<pre><code>");
pw.write(uploadedText);
pw.write("</code></pre>");
pw.flush();
}
}

但是要保证文件上传的完整性怎么办?在哈希算法一节中,我们知道,如果在上传文件的同时,把文件的哈希也传过来,服务器端做一个验证,就可以确保用户上传的文件一定是完整的。

这个验证逻辑非常适合写在ValidateUploadFilter中,因为它可以复用。

我们先写一个简单的版本,快速实现ValidateUploadFilter的逻辑:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
@WebFilter("/upload/*")
public class ValidateUploadFilter implements Filter {

@Override
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {
HttpServletRequest req = (HttpServletRequest) request;
HttpServletResponse resp = (HttpServletResponse) response;
// 获取客户端传入的签名方法和签名:
String digest = req.getHeader("Signature-Method");
String signature = req.getHeader("Signature");
if (digest == null || digest.isEmpty() || signature == null || signature.isEmpty()) {
sendErrorPage(resp, "Missing signature.");
return;
}
// 读取Request的Body并验证签名:
MessageDigest md = getMessageDigest(digest);
InputStream input = new DigestInputStream(request.getInputStream(), md);
byte[] buffer = new byte[1024];
for (;;) {
int len = input.read(buffer);
if (len == -1) {
break;
}
}
String actual = toHexString(md.digest());
if (!signature.equals(actual)) {
sendErrorPage(resp, "Invalid signature.");
return;
}
// 验证成功后继续处理:
chain.doFilter(request, response);
}

// 将byte[]转换为hex string:
private String toHexString(byte[] digest) {
StringBuilder sb = new StringBuilder();
for (byte b : digest) {
sb.append(String.format("%02x", b));
}
return sb.toString();
}

// 根据名称创建MessageDigest:
private MessageDigest getMessageDigest(String name) throws ServletException {
try {
return MessageDigest.getInstance(name);
} catch (NoSuchAlgorithmException e) {
throw new ServletException(e);
}
}

// 发送一个错误响应:
private void sendErrorPage(HttpServletResponse resp, String errorMessage) throws IOException {
resp.setStatus(HttpServletResponse.SC_BAD_REQUEST);
PrintWriter pw = resp.getWriter();
pw.write("<html><body><h1>");
pw.write(errorMessage);
pw.write("</h1></body></html>");
pw.flush();
}
}

这个ValidateUploadFilter的逻辑似乎没有问题,我们可以用curl命令测试:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
$ curl http://localhost:8080/upload/file -v -d 'test-data' \
-H 'Signature-Method: SHA-1' \
-H 'Signature: 7115e9890f5b5cc6914bdfa3b7c011db1cdafedb' \
-H 'Content-Type: application/octet-stream'
* Trying ::1...
* TCP_NODELAY set
* Connected to localhost (::1) port 8080 (#0)
> POST /upload/file HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.64.1
> Accept: */*
> Signature-Method: SHA-1
> Signature: 7115e9890f5b5cc6914bdfa3b7c011db1cdafedb
> Content-Type: application/octet-stream
> Content-Length: 9
>
* upload completely sent off: 9 out of 9 bytes
< HTTP/1.1 200
< Transfer-Encoding: chunked
< Date: Thu, 30 Jan 2020 13:56:39 GMT
<
* Connection #0 to host localhost left intact
<h1>Uploaded:</h1><pre><code></code></pre>
* Closing connection 0

ValidateUploadFilter对签名进行验证的逻辑是没有问题的,但是,细心的童鞋注意到,UploadServlet并未读取到任何数据!

这里的原因是对HttpServletRequest进行读取时,只能读取一次。如果Filter调用getInputStream()读取了一次数据,后续Servlet处理时,再次读取,将无法读到任何数据。怎么办?

这个时候,我们需要一个“伪造”的HttpServletRequest,具体做法是使用代理模式,对getInputStream()getReader()返回一个新的流:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
class ReReadableHttpServletRequest extends HttpServletRequestWrapper {
private byte[] body;
private boolean open = false;

public ReReadableHttpServletRequest(HttpServletRequest request, byte[] body) {
super(request);
this.body = body;
}

// 返回InputStream:
public ServletInputStream getInputStream() throws IOException {
if (open) {
throw new IllegalStateException("Cannot re-open input stream!");
}
open = true;
return new ServletInputStream() {
private int offset = 0;

public boolean isFinished() {
return offset >= body.length;
}

public boolean isReady() {
return true;
}

public void setReadListener(ReadListener listener) {
}

public int read() throws IOException {
if (offset >= body.length) {
return -1;
}
int n = body[offset] & 0xff;
offset++;
return n;
}
};
}

// 返回Reader:
public BufferedReader getReader() throws IOException {
if (open) {
throw new IllegalStateException("Cannot re-open reader!");
}
open = true;
return new BufferedReader(new InputStreamReader(new ByteArrayInputStream(body), "UTF-8"));
}
}

注意观察ReReadableHttpServletRequest的构造方法,它保存了ValidateUploadFilter读取的byte[]内容,并在调用getInputStream()时通过byte[]构造了一个新的ServletInputStream

然后,我们在ValidateUploadFilter中,把doFilter()调用时传给下一个处理者的HttpServletRequest替换为我们自己“伪造”的ReReadableHttpServletRequest

1
2
3
4
5
public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {
...
chain.doFilter(new ReReadableHttpServletRequest(req, output.toByteArray()), response);
}

再注意到我们编写ReReadableHttpServletRequest时,是从HttpServletRequestWrapper继承,而不是直接实现HttpServletRequest接口。这是因为,Servlet的每个新版本都会对接口增加一些新方法,从HttpServletRequestWrapper继承可以确保新方法被正确地覆写了,因为HttpServletRequestWrapper是由Servlet的jar包提供的,目的就是为了让我们方便地实现对HttpServletRequest接口的代理。

我们总结一下对HttpServletRequest接口进行代理的步骤:

  1. HttpServletRequestWrapper继承一个XxxHttpServletRequest,需要传入原始的HttpServletRequest实例;
  2. 覆写某些方法,使得新的XxxHttpServletRequest实例看上去“改变”了原始的HttpServletRequest实例;
  3. doFilter()中传入新的XxxHttpServletRequest实例。

虽然整个Filter的代码比较复杂,但它的好处在于:这个Filter在整个处理链中实现了灵活的“可插拔”特性,即是否启用对Web应用程序的其他组件(Filter、Servlet)完全没有影响。

练习

使用Filter修改HttpServletRequest请求。

下载练习

小结

借助HttpServletRequestWrapper,我们可以在Filter中实现对原始HttpServletRequest的修改。

既然我们能通过Filter修改HttpServletRequest,自然也能修改HttpServletResponse,因为这两者都是接口。

我们来看一下在什么情况下我们需要修改HttpServletResponse

假设我们编写了一个Servlet,但由于业务逻辑比较复杂,处理该请求需要耗费很长的时间:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
@WebServlet(urlPatterns = "/slow/hello")
public class HelloServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
resp.setContentType("text/html");
// 模拟耗时1秒:
try {
Thread.sleep(1000);
} catch (InterruptedException e) {
}
PrintWriter pw = resp.getWriter();
pw.write("<h1>Hello, world!</h1>");
pw.flush();
}
}

好消息是每次返回的响应内容是固定的,因此,如果我们能使用缓存将结果缓存起来,就可以大大提高Web应用程序的运行效率。

缓存逻辑最好不要在Servlet内部实现,因为我们希望能复用缓存逻辑,所以,编写一个CacheFilter最合适:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
@WebFilter("/slow/*")
public class CacheFilter implements Filter {
// Path到byte[]的缓存:
private Map<String, byte[]> cache = new ConcurrentHashMap<>();

public void doFilter(ServletRequest request, ServletResponse response, FilterChain chain)
throws IOException, ServletException {
HttpServletRequest req = (HttpServletRequest) request;
HttpServletResponse resp = (HttpServletResponse) response;
// 获取Path:
String url = req.getRequestURI();
// 获取缓存内容:
byte[] data = this.cache.get(url);
resp.setHeader("X-Cache-Hit", data == null ? "No" : "Yes");
if (data == null) {
// 缓存未找到,构造一个伪造的Response:
CachedHttpServletResponse wrapper = new CachedHttpServletResponse(resp);
// 让下游组件写入数据到伪造的Response:
chain.doFilter(request, wrapper);
// 从伪造的Response中读取写入的内容并放入缓存:
data = wrapper.getContent();
cache.put(url, data);
}
// 写入到原始的Response:
ServletOutputStream output = resp.getOutputStream();
output.write(data);
output.flush();
}
}

实现缓存的关键在于,调用doFilter()时,我们不能传入原始的HttpServletResponse,因为这样就会写入Socket,我们也就无法获取下游组件写入的内容。如果我们传入的是“伪造”的HttpServletResponse,让下游组件写入到我们预设的ByteArrayOutputStream,我们就“截获”了下游组件写入的内容,于是,就可以把内容缓存起来,再通过原始的HttpServletResponse实例写入到网络。

这个CachedHttpServletResponse实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
class CachedHttpServletResponse extends HttpServletResponseWrapper {
private boolean open = false;
private ByteArrayOutputStream output = new ByteArrayOutputStream();

public CachedHttpServletResponse(HttpServletResponse response) {
super(response);
}

// 获取Writer:
public PrintWriter getWriter() throws IOException {
if (open) {
throw new IllegalStateException("Cannot re-open writer!");
}
open = true;
return new PrintWriter(output, false, StandardCharsets.UTF_8);
}

// 获取OutputStream:
public ServletOutputStream getOutputStream() throws IOException {
if (open) {
throw new IllegalStateException("Cannot re-open output stream!");
}
open = true;
return new ServletOutputStream() {
public boolean isReady() {
return true;
}

public void setWriteListener(WriteListener listener) {
}

// 实际写入ByteArrayOutputStream:
public void write(int b) throws IOException {
output.write(b);
}
};
}

// 返回写入的byte[]:
public byte[] getContent() {
return output.toByteArray();
}
}

可见,如果我们想要修改响应,就可以通过HttpServletResponseWrapper构造一个“伪造”的HttpServletResponse,这样就能拦截到写入的数据。

修改响应时,最后不要忘记把数据写入原始的HttpServletResponse实例。

这个CacheFilter同样是一个“可插拔”组件,它是否启用不影响Web应用程序的其他组件(Filter、Servlet)。

练习

通过Filter修改响应。

下载练习

小结

借助HttpServletResponseWrapper,我们可以在Filter中实现对原始HttpServletResponse的修改。

使用Listener

除了Servlet和Filter外,JavaEE的Servlet规范还提供了第三种组件:Listener。

Listener顾名思义就是监听器,有好几种Listener,其中最常用的是ServletContextListener,我们编写一个实现了ServletContextListener接口的类如下:

1
2
3
4
5
6
7
8
9
10
11
12
@WebListener
public class AppListener implements ServletContextListener {
// 在此初始化WebApp,例如打开数据库连接池等:
public void contextInitialized(ServletContextEvent sce) {
System.out.println("WebApp initialized.");
}

// 在此清理WebApp,例如关闭数据库连接池等:
public void contextDestroyed(ServletContextEvent sce) {
System.out.println("WebApp destroyed.");
}
}

任何标注为@WebListener,且实现了特定接口的类会被Web服务器自动初始化。上述AppListener实现了ServletContextListener接口,它会在整个Web应用程序初始化完成后,以及Web应用程序关闭后获得回调通知。我们可以把初始化数据库连接池等工作放到contextInitialized()回调方法中,把清理资源的工作放到contextDestroyed()回调方法中,因为Web服务器保证在contextInitialized()执行后,才会接受用户的HTTP请求。

很多第三方Web框架都会通过一个ServletContextListener接口初始化自己。

除了ServletContextListener外,还有几种Listener:

  • HttpSessionListener:监听HttpSession的创建和销毁事件;
  • ServletRequestListener:监听ServletRequest请求的创建和销毁事件;
  • ServletRequestAttributeListener:监听ServletRequest请求的属性变化事件(即调用ServletRequest.setAttribute()方法);
  • ServletContextAttributeListener:监听ServletContext的属性变化事件(即调用ServletContext.setAttribute()方法);

ServletContext

一个Web服务器可以运行一个或多个WebApp,对于每个WebApp,Web服务器都会为其创建一个全局唯一的ServletContext实例,我们在AppListener里面编写的两个回调方法实际上对应的就是ServletContext实例的创建和销毁:

1
2
3
public void contextInitialized(ServletContextEvent sce) {
System.out.println("WebApp initialized: ServletContext = " + sce.getServletContext());
}

ServletRequestHttpSession等很多对象也提供getServletContext()方法获取到同一个ServletContext实例。ServletContext实例最大的作用就是设置和共享全局信息。

此外,ServletContext还提供了动态添加Servlet、Filter、Listener等功能,它允许应用程序在运行期间动态添加一个组件,虽然这个功能不是很常用。

练习

使用Listener监听WebApp。

下载练习

小结

通过Listener我们可以监听Web应用程序的生命周期,获取HttpSession等创建和销毁的事件;

ServletContext是一个WebApp运行期的全局唯一实例,可用于设置和共享配置信息。



部署

对一个Web应用程序来说,除了Servlet、Filter这些逻辑组件,还需要JSP这样的视图文件,外加一堆静态资源文件,如CSS、JS等。

合理组织文件结构非常重要。我们以一个具体的Web应用程序为例:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
webapp
├── pom.xml
└── src
└── main
├── java
│   └── com
│   └── itranswarp
│   └── learnjava
│   ├── Main.java
│   ├── filter
│   │   └── EncodingFilter.java
│   └── servlet
│   ├── FileServlet.java
│   └── HelloServlet.java
├── resources
└── webapp
├── WEB-INF
│   └── web.xml
├── favicon.ico
└── static
└── bootstrap.css

我们把所有的静态资源文件放入/static/目录,在开发阶段,有些Web服务器会自动为我们加一个专门负责处理静态文件的Servlet,但如果IndexServlet映射路径为/,会屏蔽掉处理静态文件的Servlet映射。因此,我们需要自己编写一个处理静态文件的FileServlet

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
@WebServlet(urlPatterns = "/static/*")
public class FileServlet extends HttpServlet {
protected void doGet(HttpServletRequest req, HttpServletResponse resp) throws ServletException, IOException {
ServletContext ctx = req.getServletContext();
// RequestURI包含ContextPath,需要去掉:
String urlPath = req.getRequestURI().substring(ctx.getContextPath().length());
// 获取真实文件路径:
String filepath = ctx.getRealPath(urlPath);
if (filepath == null) {
// 无法获取到路径:
resp.sendError(HttpServletResponse.SC_NOT_FOUND);
return;
}
Path path = Paths.get(filepath);
if (!path.toFile().isFile()) {
// 文件不存在:
resp.sendError(HttpServletResponse.SC_NOT_FOUND);
return;
}
// 根据文件名猜测Content-Type:
String mime = Files.probeContentType(path);
if (mime == null) {
mime = "application/octet-stream";
}
resp.setContentType(mime);
// 读取文件并写入Response:
OutputStream output = resp.getOutputStream();
try (InputStream input = new BufferedInputStream(new FileInputStream(filepath))) {
input.transferTo(output);
}
output.flush();
}
}

这样一来,在开发阶段,我们就可以方便地高效开发。

类似Tomcat这样的Web服务器,运行的Web应用程序通常都是业务系统,因此,这类服务器也被称为应用服务器。应用服务器并不擅长处理静态文件,也不适合直接暴露给用户。通常,我们在生产环境部署时,总是使用类似Nginx这样的服务器充当反向代理和静态服务器,只有动态请求才会放行给应用服务器,所以,部署架构如下:

1
2
3
4
5
6
7
8
9
             ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐

│ /static/* │
┌───────┐ ┌──────────▶ file
│Browser├────┼─┤ │ ┌ ─ ─ ─ ─ ─ ─ ┐
└───────┘ │/ proxy_pass
│ └─────────────────────┼───▶│ Web Server │
Nginx
└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘ └ ─ ─ ─ ─ ─ ─ ┘

实现上述功能的Nginx配置文件如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
server {
listen 80;

server_name www.local.liaoxuefeng.com;

# 静态文件根目录:
root /path/to/src/main/webapp;

access_log /var/log/nginx/webapp_access_log;
error_log /var/log/nginx/webapp_error_log;

# 处理静态文件请求:
location /static {
}

# 处理静态文件请求:
location /favicon.ico {
}

# 不允许请求/WEB-INF:
location /WEB-INF {
return 404;
}

# 其他请求转发给Tomcat:
location / {
proxy_pass http://127.0.0.1:8080;
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
}
}

使用Nginx配合Tomcat服务器,可以充分发挥Nginx作为网关的优势,既可以高效处理静态文件,也可以把https、防火墙、限速、反爬虫等功能放到Nginx中,使得我们自己的WebApp能专注于业务逻辑。

练习

使用Nginx+Tomcat部署一个Java Webapp。

下载练习

小结

部署Web应用程序时,要设计合理的目录结构,同时考虑开发模式需要便捷性,生产模式需要高性能。



留言與分享

行为型模式主要涉及算法和对象间的职责分配。通过使用对象组合,行为型模式可以描述一组对象应该如何协作来完成一个整体任务。

行为型模式有:

  • 责任链
  • 命令
  • 解释器
  • 迭代器
  • 中介
  • 备忘录
  • 观察者
  • 状态
  • 策略
  • 模板方法
  • 访问者

使多个对象都有机会处理请求,从而避免请求的发送者和接收者之间的耦合关系。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它为止。

责任链模式(Chain of Responsibility)是一种处理请求的模式,它让多个处理器都有机会处理该请求,直到其中某个处理成功为止。责任链模式把多个处理器串成链,然后让请求在链上传递:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
     ┌─────────┐
│ Request │
└─────────┘

┌ ─ ─ ─ ─ ┼ ─ ─ ─ ─ ┐

│ ┌─────────────┐ │
│ ProcessorA │
│ └─────────────┘ │

│ ▼ │
┌─────────────┐
│ │ ProcessorB │ │
└─────────────┘
│ │ │

│ ┌─────────────┐ │
│ ProcessorC │
│ └─────────────┘ │

└ ─ ─ ─ ─ ┼ ─ ─ ─ ─ ┘


在实际场景中,财务审批就是一个责任链模式。假设某个员工需要报销一笔费用,审核者可以分为:

  • Manager:只能审核1000元以下的报销;
  • Director:只能审核10000元以下的报销;
  • CEO:可以审核任意额度。

用责任链模式设计此报销流程时,每个审核者只关心自己责任范围内的请求,并且处理它。对于超出自己责任范围的,扔给下一个审核者处理,这样,将来继续添加审核者的时候,不用改动现有逻辑。

我们来看看如何实现责任链模式。

首先,我们要抽象出请求对象,它将在责任链上传递:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class Request {
private String name;
private BigDecimal amount;

public Request(String name, BigDecimal amount) {
this.name = name;
this.amount = amount;
}

public String getName() {
return name;
}

public BigDecimal getAmount() {
return amount;
}
}

其次,我们要抽象出处理器:

1
2
3
4
5
6
public interface Handler {
// 返回Boolean.TRUE = 成功
// 返回Boolean.FALSE = 拒绝
// 返回null = 交下一个处理
Boolean process(Request request);
}

并且做好约定:如果返回Boolean.TRUE,表示处理成功,如果返回Boolean.FALSE,表示处理失败(请求被拒绝),如果返回null,则交由下一个Handler处理。

然后,依次编写ManagerHandler、DirectorHandler和CEOHandler。以ManagerHandler为例:

1
2
3
4
5
6
7
8
9
10
public class ManagerHandler implements Handler {
public Boolean process(Request request) {
// 如果超过1000元,处理不了,交下一个处理:
if (request.getAmount().compareTo(BigDecimal.valueOf(1000)) > 0) {
return null;
}
// 对Bob有偏见:
return !request.getName().equalsIgnoreCase("bob");
}
}

有了不同的Handler后,我们还要把这些Handler组合起来,变成一个链,并通过一个统一入口处理:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public class HandlerChain {
// 持有所有Handler:
private List<Handler> handlers = new ArrayList<>();

public void addHandler(Handler handler) {
this.handlers.add(handler);
}

public boolean process(Request request) {
// 依次调用每个Handler:
for (Handler handler : handlers) {
Boolean r = handler.process(request);
if (r != null) {
// 如果返回TRUE或FALSE,处理结束:
System.out.println(request + " " + (r ? "Approved by " : "Denied by ") + handler.getClass().getSimpleName());
return r;
}
}
throw new RuntimeException("Could not handle request: " + request);
}
}

现在,我们就可以在客户端组装出责任链,然后用责任链来处理请求:

1
2
3
4
5
6
7
8
9
10
// 构造责任链:
HandlerChain chain = new HandlerChain();
chain.addHandler(new ManagerHandler());
chain.addHandler(new DirectorHandler());
chain.addHandler(new CEOHandler());
// 处理请求:
chain.process(new Request("Bob", new BigDecimal("123.45")));
chain.process(new Request("Alice", new BigDecimal("1234.56")));
chain.process(new Request("Bill", new BigDecimal("12345.67")));
chain.process(new Request("John", new BigDecimal("123456.78")));

责任链模式本身很容易理解,需要注意的是,Handler添加的顺序很重要,如果顺序不对,处理的结果可能就不是符合要求的。

此外,责任链模式有很多变种。有些责任链的实现方式是通过某个Handler手动调用下一个Handler来传递Request,例如:

1
2
3
4
5
6
7
8
9
10
11
public class AHandler implements Handler {
private Handler next;
public void process(Request request) {
if (!canProcess(request)) {
// 手动交给下一个Handler处理:
next.process(request);
} else {
...
}
}
}

还有一些责任链模式,每个Handler都有机会处理Request,通常这种责任链被称为拦截器(Interceptor)或者过滤器(Filter),它的目的不是找到某个Handler处理掉Request,而是每个Handler都做一些工作,比如:

  • 记录日志;
  • 检查权限;
  • 准备相关资源;

例如,JavaEE的Servlet规范定义的Filter就是一种责任链模式,它不但允许每个Filter都有机会处理请求,还允许每个Filter决定是否将请求“放行”给下一个Filter

1
2
3
4
5
6
7
8
9
10
11
12
public class AuditFilter implements Filter {
public void doFilter(ServletRequest req, ServletResponse resp, FilterChain chain) throws IOException, ServletException {
log(req);
if (check(req)) {
// 放行:
chain.doFilter(req, resp);
} else {
// 拒绝:
sendError(resp);
}
}
}

这种模式不但允许一个Filter自行决定处理ServletRequestServletResponse,还可以“伪造”ServletRequestServletResponse以便让下一个Filter处理,能实现非常复杂的功能。

练习

使用责任链模式实现审批。

下载练习

小结

责任链模式是一种把多个处理器组合在一起,依次处理请求的模式;

责任链模式的好处是添加新的处理器或者重新排列处理器非常容易;

责任链模式经常用在拦截、预处理请求等。

将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化,对请求排队或记录请求日志,以及支持可撤销的操作。

命令模式(Command)是指,把请求封装成一个命令,然后执行该命令。

在使用命令模式前,我们先以一个编辑器为例子,看看如何实现简单的编辑操作:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
public class TextEditor {
private StringBuilder buffer = new StringBuilder();

public void copy() {
...
}

public void paste() {
String text = getFromClipBoard();
add(text);
}

public void add(String s) {
buffer.append(s);
}

public void delete() {
if (buffer.length() > 0) {
buffer.deleteCharAt(buffer.length() - 1);
}
}

public String getState() {
return buffer.toString();
}
}

我们用一个StringBuilder模拟一个文本编辑器,它支持copy()paste()add()delete()等方法。

正常情况,我们像这样调用TextEditor

1
2
3
4
5
TextEditor editor = new TextEditor();
editor.add("Command pattern in text editor.\n");
editor.copy();
editor.paste();
System.out.println(editor.getState());

这是直接调用方法,调用方需要了解TextEditor的所有接口信息。

如果改用命令模式,我们就要把调用方发送命令和执行方执行命令分开。怎么分?

解决方案是引入一个Command接口:

1
2
3
public interface Command {
void execute();
}

调用方创建一个对应的Command,然后执行,并不关心内部是如何具体执行的。

为了支持CopyCommandPasteCommand这两个命令,我们从Command接口派生:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class CopyCommand implements Command {
// 持有执行者对象:
private TextEditor receiver;

public CopyCommand(TextEditor receiver) {
this.receiver = receiver;
}

public void execute() {
receiver.copy();
}
}

public class PasteCommand implements Command {
private TextEditor receiver;

public PasteCommand(TextEditor receiver) {
this.receiver = receiver;
}

public void execute() {
receiver.paste();
}
}

最后我们把CommandTextEditor组装一下,客户端这么写:

1
2
3
4
5
6
7
8
9
10
TextEditor editor = new TextEditor();
editor.add("Command pattern in text editor.\n");
// 执行一个CopyCommand:
Command copy = new CopyCommand(editor);
copy.execute();
editor.add("----\n");
// 执行一个PasteCommand:
Command paste = new PasteCommand(editor);
paste.execute();
System.out.println(editor.getState());

这就是命令模式的结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
┌──────┐      ┌───────┐
│Client│─ ─ ─▶│Command│
└──────┘ └───────┘
│ ┌──────────────┐
├─▶│ CopyCommand │
│ ├──────────────┤
│ │editor.copy() │─ ┐
│ └──────────────┘
│ │ ┌────────────┐
│ ┌──────────────┐ ─▶│ TextEditor │
└─▶│ PasteCommand │ │ └────────────┘
├──────────────┤
│editor.paste()│─ ┘
└──────────────┘

有的童鞋会有疑问:搞了一大堆Command,多了好几个类,还不如直接这么写简单:

1
2
3
4
TextEditor editor = new TextEditor();
editor.add("Command pattern in text editor.\n");
editor.copy();
editor.paste();

实际上,使用命令模式,确实增加了系统的复杂度。如果需求很简单,那么直接调用显然更直观而且更简单。

那么我们还需要命令模式吗?

答案是视需求而定。如果TextEditor复杂到一定程度,并且需要支持Undo、Redo的功能时,就需要使用命令模式,因为我们可以给每个命令增加undo()

1
2
3
4
public interface Command {
void execute();
void undo();
}

然后把执行的一系列命令用List保存起来,就既能支持Undo,又能支持Redo。这个时候,我们又需要一个Invoker对象,负责执行命令并保存历史命令:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
┌─────────────┐
│ Client │
└─────────────┘




┌─────────────┐
│ Invoker │
├─────────────┤ ┌───────┐
│List commands│─ ─▶│Command│
│invoke(c) │ └───────┘
│undo() │ │ ┌──────────────┐
└─────────────┘ ├─▶│ CopyCommand │
│ ├──────────────┤
│ │editor.copy() │─ ┐
│ └──────────────┘
│ │ ┌────────────┐
│ ┌──────────────┐ ─▶│ TextEditor │
└─▶│ PasteCommand │ │ └────────────┘
├──────────────┤
│editor.paste()│─ ┘
└──────────────┘

可见,模式带来的设计复杂度的增加是随着需求而增加的,它减少的是系统各组件的耦合度。

练习

给命令模式新增Add和Delete命令并支持Undo、Redo操作。

下载练习

小结

命令模式的设计思想是把命令的创建和执行分离,使得调用者无需关心具体的执行过程。

通过封装Command对象,命令模式可以保存已执行的命令,从而支持撤销、重做等操作。

解释器

给定一个语言,定义它的文法的一种表示,并定义一个解释器,这个解释器使用该表示来解释语言中的句子。

解释器模式(Interpreter)是一种针对特定问题设计的一种解决方案。例如,匹配字符串的时候,由于匹配条件非常灵活,使得通过代码来实现非常不灵活。举个例子,针对以下的匹配条件:

  • +开头的数字表示的区号和电话号码,如+861012345678
  • 以英文开头,后接英文和数字,并以.分隔的域名,如www.liaoxuefeng.com
  • /开头的文件路径,如/path/to/file.txt

因此,需要一种通用的表示方法——正则表达式来进行匹配。正则表达式就是一个字符串,但要把正则表达式解析为语法树,然后再匹配指定的字符串,就需要一个解释器。

实现一个完整的正则表达式的解释器非常复杂,但是使用解释器模式却很简单:

1
2
String s = "+861012345678";
System.out.println(s.matches("^\\+\\d+$"));

类似的,当我们使用JDBC时,执行的SQL语句虽然是字符串,但最终需要数据库服务器的SQL解释器来把SQL“翻译”成数据库服务器能执行的代码,这个执行引擎也非常复杂,但对于使用者来说,仅仅需要写出SQL字符串即可。

练习

请实现一个简单的解释器,它可以以SLF4J的日志格式输出字符串:

1
2
log("[{}] start {} at {}...", LocalTime.now().withNano(0), "engine", LocalDate.now());
// [11:02:18] start engine at 2020-02-21...

下载练习

小结

解释器模式通过抽象语法树实现对用户输入的解释执行。

解释器模式的实现通常非常复杂,且一般只能解决一类特定问题。



迭代器

提供一种方法顺序访问一个聚合对象中的各个元素,而又不需要暴露该对象的内部表示。

迭代器模式(Iterator)实际上在Java的集合类中已经广泛使用了。我们以List为例,要遍历ArrayList,即使我们知道它的内部存储了一个Object[]数组,也不应该直接使用数组索引去遍历,因为这样需要了解集合内部的存储结构。如果使用Iterator遍历,那么,ArrayListLinkedList都可以以一种统一的接口来遍历:

1
2
3
4
List<String> list = ...
for (Iterator<String> it = list.iterator(); it.hasNext(); ) {
String s = it.next();
}

实际上,因为Iterator模式十分有用,因此,Java允许我们直接把任何支持Iterator的集合对象用foreach循环写出来:

1
2
3
4
List<String> list = ...
for (String s : list) {

}

然后由Java编译器完成Iterator模式的所有循环代码。

虽然我们对如何使用Iterator有了一定了解,但如何实现一个Iterator模式呢?我们以一个自定义的集合为例,通过Iterator模式实现倒序遍历:

1
2
3
4
5
6
7
8
9
10
11
12
public class ReverseArrayCollection<T> implements Iterable<T> {
// 以数组形式持有集合:
private T[] array;

public ReverseArrayCollection(T... objs) {
this.array = Arrays.copyOfRange(objs, 0, objs.length);
}

public Iterator<T> iterator() {
return ???;
}
}

实现Iterator模式的关键是返回一个Iterator对象,该对象知道集合的内部结构,因为它可以实现倒序遍历。我们使用Java的内部类实现这个Iterator

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
public class ReverseArrayCollection<T> implements Iterable<T> {
private T[] array;

public ReverseArrayCollection(T... objs) {
this.array = Arrays.copyOfRange(objs, 0, objs.length);
}

public Iterator<T> iterator() {
return new ReverseIterator();
}

class ReverseIterator implements Iterator<T> {
// 索引位置:
int index;

public ReverseIterator() {
// 创建Iterator时,索引在数组末尾:
this.index = ReverseArrayCollection.this.array.length;
}

public boolean hasNext() {
// 如果索引大于0,那么可以移动到下一个元素(倒序往前移动):
return index > 0;
}

public T next() {
// 将索引移动到下一个元素并返回(倒序往前移动):
index--;
return array[index];
}
}
}

使用内部类的好处是内部类隐含地持有一个它所在对象的this引用,可以通过ReverseArrayCollection.this引用到它所在的集合。上述代码实现的逻辑非常简单,但是实际应用时,如果考虑到多线程访问,当一个线程正在迭代某个集合,而另一个线程修改了集合的内容时,是否能继续安全地迭代,还是抛出ConcurrentModificationException,就需要更仔细地设计。

练习

使用Iterator模式实现集合的倒序遍历。

下载练习

小结

Iterator模式常用于遍历集合,它允许集合提供一个统一的Iterator接口来遍历元素,同时保证调用者对集合内部的数据结构一无所知,从而使得调用者总是以相同的接口遍历各种不同类型的集合。



中介

用一个中介对象来封装一系列的对象交互。中介者使各个对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。

中介模式(Mediator)又称调停者模式,它的目的是把多方会谈变成双方会谈,从而实现多方的松耦合。

有些童鞋听到中介立刻想到房产中介,立刻气不打一处来。这个中介模式与房产中介还真有点像,所以消消气,先看例子。

考虑一个简单的点餐输入:

order

这个小系统有4个参与对象:

  • 多选框;
  • “选择全部”按钮;
  • “取消所有”按钮;
  • “反选”按钮。

它的复杂性在于,当多选框变化时,它会影响“选择全部”和“取消所有”按钮的状态(是否可点击),当用户点击某个按钮时,例如“反选”,除了会影响多选框的状态,它又可能影响“选择全部”和“取消所有”按钮的状态。

所以这是一个多方会谈,逻辑写起来很复杂:

1
2
3
4
5
6
7
8
9
┌─────────────────┐     ┌─────────────────┐
│ CheckBox List │◀───▶│SelectAll Button │
└─────────────────┘ └─────────────────┘
▲ ▲ ▲
│ └─────────────────────┤
▼ │
┌─────────────────┐ ┌────────┴────────┐
│SelectNone Button│◀────│ Inverse Button │
└─────────────────┘ └─────────────────┘

如果我们引入一个中介,把多方会谈变成多个双方会谈,虽然多了一个对象,但对象之间的关系就变简单了:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
            ┌─────────────────┐
┌─────▶│ CheckBox List │
│ └─────────────────┘
│ ┌─────────────────┐
│ ┌───▶│SelectAll Button │
▼ ▼ └─────────────────┘
┌─────────┐
│Mediator │
└─────────┘
▲ ▲ ┌─────────────────┐
│ └───▶│SelectNone Button│
│ └─────────────────┘
│ ┌─────────────────┐
└─────▶│ Inverse Button │
└─────────────────┘

下面我们用中介模式来实现各个UI组件的交互。首先把UI组件给画出来:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
public class Main {
public static void main(String[] args) {
new OrderFrame("Hanburger", "Nugget", "Chip", "Coffee");
}
}

class OrderFrame extends JFrame {
public OrderFrame(String... names) {
setTitle("Order");
setSize(460, 200);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
Container c = getContentPane();
c.setLayout(new FlowLayout(FlowLayout.LEADING, 20, 20));
c.add(new JLabel("Use Mediator Pattern"));
List<JCheckBox> checkboxList = addCheckBox(names);
JButton selectAll = addButton("Select All");
JButton selectNone = addButton("Select None");
selectNone.setEnabled(false);
JButton selectInverse = addButton("Inverse Select");
new Mediator(checkBoxList, selectAll, selectNone, selectInverse);
setVisible(true);
}

private List<JCheckBox> addCheckBox(String... names) {
JPanel panel = new JPanel();
panel.add(new JLabel("Menu:"));
List<JCheckBox> list = new ArrayList<>();
for (String name : names) {
JCheckBox checkbox = new JCheckBox(name);
list.add(checkbox);
panel.add(checkbox);
}
getContentPane().add(panel);
return list;
}

private JButton addButton(String label) {
JButton button = new JButton(label);
getContentPane().add(button);
return button;
}
}

然后,我们设计一个Mediator类,它引用4个UI组件,并负责跟它们交互:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
public class Mediator {
// 引用UI组件:
private List<JCheckBox> checkBoxList;
private JButton selectAll;
private JButton selectNone;
private JButton selectInverse;

public Mediator(List<JCheckBox> checkBoxList, JButton selectAll, JButton selectNone, JButton selectInverse) {
this.checkBoxList = checkBoxList;
this.selectAll = selectAll;
this.selectNone = selectNone;
this.selectInverse = selectInverse;
// 绑定事件:
this.checkBoxList.forEach(checkBox -> {
checkBox.addChangeListener(this::onCheckBoxChanged);
});
this.selectAll.addActionListener(this::onSelectAllClicked);
this.selectNone.addActionListener(this::onSelectNoneClicked);
this.selectInverse.addActionListener(this::onSelectInverseClicked);
}

// 当checkbox有变化时:
public void onCheckBoxChanged(ChangeEvent event) {
boolean allChecked = true;
boolean allUnchecked = true;
for (var checkBox : checkBoxList) {
if (checkBox.isSelected()) {
allUnchecked = false;
} else {
allChecked = false;
}
}
selectAll.setEnabled(!allChecked);
selectNone.setEnabled(!allUnchecked);
}

// 当点击select all:
public void onSelectAllClicked(ActionEvent event) {
checkBoxList.forEach(checkBox -> checkBox.setSelected(true));
selectAll.setEnabled(false);
selectNone.setEnabled(true);
}

// 当点击select none:
public void onSelectNoneClicked(ActionEvent event) {
checkBoxList.forEach(checkBox -> checkBox.setSelected(false));
selectAll.setEnabled(true);
selectNone.setEnabled(false);
}

// 当点击select inverse:
public void onSelectInverseClicked(ActionEvent event) {
checkBoxList.forEach(checkBox -> checkBox.setSelected(!checkBox.isSelected()));
onCheckBoxChanged(null);
}
}

运行一下看看效果:

mediator

使用Mediator模式后,我们得到了以下好处:

  • 各个UI组件互不引用,这样就减少了组件之间的耦合关系;
  • Mediator用于当一个组件发生状态变化时,根据当前所有组件的状态决定更新某些组件;
  • 如果新增一个UI组件,我们只需要修改Mediator更新状态的逻辑,现有的其他UI组件代码不变。

Mediator模式经常用在有众多交互组件的UI上。为了简化UI程序,MVC模式以及MVVM模式都可以看作是Mediator模式的扩展。

练习

使用Mediator模式。

下载练习

小结

中介模式是通过引入一个中介对象,把多边关系变成多个双边关系,从而简化系统组件的交互耦合度。



备忘录

在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。

备忘录模式(Memento),主要用于捕获一个对象的内部状态,以便在将来的某个时候恢复此状态。

其实我们使用的几乎所有软件都用到了备忘录模式。最简单的备忘录模式就是保存到文件,打开文件。对于文本编辑器来说,保存就是把TextEditor类的字符串存储到文件,打开就是恢复TextEditor类的状态。对于图像编辑器来说,原理是一样的,只是保存和恢复的数据格式比较复杂而已。Java的序列化也可以看作是备忘录模式。

在使用文本编辑器的时候,我们还经常使用Undo、Redo这些功能。这些其实也可以用备忘录模式实现,即不定期地把TextEditor类的字符串复制一份存起来,这样就可以Undo或Redo。

标准的备忘录模式有这么几种角色:

  • Memento:存储的内部状态;
  • Originator:创建一个备忘录并设置其状态;
  • Caretaker:负责保存备忘录。

实际上我们在使用备忘录模式的时候,不必设计得这么复杂,只需要对类似TextEditor的类,增加getState()setState()就可以了。

我们以一个文本编辑器TextEditor为例,它内部使用StringBuilder允许用户增删字符:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class TextEditor {
private StringBuilder buffer = new StringBuilder();

public void add(char ch) {
buffer.append(ch);
}

public void add(String s) {
buffer.append(s);
}

public void delete() {
if (buffer.length() > 0) {
buffer.deleteCharAt(buffer.length() - 1);
}
}
}

为了支持这个TextEditor能保存和恢复状态,我们增加getState()setState()两个方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class TextEditor {
...

// 获取状态:
public String getState() {
return buffer.toString();
}

// 恢复状态:
public void setState(String state) {
this.buffer.delete(0, this.buffer.length());
this.buffer.append(state);
}
}

对这个简单的文本编辑器,用一个String就可以表示其状态,对于复杂的对象模型,通常我们会使用JSON、XML等复杂格式。

练习

给TextEditor添加备忘录模式。

下载练习

小结

备忘录模式是为了保存对象的内部状态,并在将来恢复,大多数软件提供的保存、打开,以及编辑过程中的Undo、Redo都是备忘录模式的应用。



定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新。

观察者模式(Observer)又称发布-订阅模式(Publish-Subscribe:Pub/Sub)。它是一种通知机制,让发送通知的一方(被观察方)和接收通知的一方(观察者)能彼此分离,互不影响。

要理解观察者模式,我们还是看例子。

假设一个电商网站,有多种Product(商品),同时,Customer(消费者)和Admin(管理员)对商品上架、价格改变都感兴趣,希望能第一时间获得通知。于是,Store(商场)可以这么写:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class Store {
Customer customer;
Admin admin;

private Map<String, Product> products = new HashMap<>();

public void addNewProduct(String name, double price) {
Product p = new Product(name, price);
products.put(p.getName(), p);
// 通知用户:
customer.onPublished(p);
// 通知管理员:
admin.onPublished(p);
}

public void setProductPrice(String name, double price) {
Product p = products.get(name);
p.setPrice(price);
// 通知用户:
customer.onPriceChanged(p);
// 通知管理员:
admin.onPriceChanged(p);
}
}

我们观察上述Store类的问题:它直接引用了CustomerAdmin。先不考虑多个Customer或多个Admin的问题,上述Store类最大的问题是,如果要加一个新的观察者类型,例如工商局管理员,Store类就必须继续改动。

因此,上述问题的本质是Store希望发送通知给那些关心Product的对象,但Store并不想知道这些人是谁。观察者模式就是要分离被观察者和观察者之间的耦合关系。

要实现这一目标也很简单,Store不能直接引用CustomerAdmin,相反,它引用一个ProductObserver接口,任何人想要观察Store,只要实现该接口,并且把自己注册到Store即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
public class Store {
private List<ProductObserver> observers = new ArrayList<>();
private Map<String, Product> products = new HashMap<>();

// 注册观察者:
public void addObserver(ProductObserver observer) {
this.observers.add(observer);
}

// 取消注册:
public void removeObserver(ProductObserver observer) {
this.observers.remove(observer);
}

public void addNewProduct(String name, double price) {
Product p = new Product(name, price);
products.put(p.getName(), p);
// 通知观察者:
observers.forEach(o -> o.onPublished(p));
}

public void setProductPrice(String name, double price) {
Product p = products.get(name);
p.setPrice(price);
// 通知观察者:
observers.forEach(o -> o.onPriceChanged(p));
}
}

就是这么一个小小的改动,使得观察者类型就可以无限扩充,而且,观察者的定义可以放到客户端:

1
2
3
4
5
6
7
8
// observer:
Admin a = new Admin();
Customer c = new Customer();
// store:
Store store = new Store();
// 注册观察者:
store.addObserver(a);
store.addObserver(c);

甚至可以注册匿名观察者:

1
2
3
4
5
6
7
8
9
store.addObserver(new ProductObserver() {
public void onPublished(Product product) {
System.out.println("[Log] on product published: " + product);
}

public void onPriceChanged(Product product) {
System.out.println("[Log] on product price changed: " + product);
}
});

用一张图画出观察者模式:

1
2
3
4
5
6
7
8
9
10
┌─────────┐      ┌───────────────┐
│ Store │─ ─ ─▶│ProductObserver│
└─────────┘ └───────────────┘
│ ▲

│ ┌─────┴─────┐
▼ │ │
┌─────────┐ ┌─────────┐ ┌─────────┐
│ Product │ │ Admin │ │Customer │ ...
└─────────┘ └─────────┘ └─────────┘

观察者模式也有很多变体形式。有的观察者模式把被观察者也抽象出接口:

1
2
3
4
public interface ProductObservable { // 注意此处拼写是Observable不是Observer!
void addObserver(ProductObserver observer);
void removeObserver(ProductObserver observer);
}

对应的实体被观察者就要实现该接口:

1
2
3
public class Store implements ProductObservable {
...
}

有些观察者模式把通知变成一个Event对象,从而不再有多种方法通知,而是统一成一种:

1
2
3
public interface ProductObserver {
void onEvent(ProductEvent event);
}

让观察者自己从Event对象中读取通知类型和通知数据。

广义的观察者模式包括所有消息系统。所谓消息系统,就是把观察者和被观察者完全分离,通过消息系统本身来通知:

1
2
3
4
5
6
7
8
9
10
11
12
13
                 ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐
Messaging System
│ │
┌──────────────────┐
┌──┼─▶│Topic:newProduct │─┼─┐ ┌─────────┐
│ └──────────────────┘ ├──▶│ConsumerA│
┌─────────┐ │ │ ┌──────────────────┐ │ │ └─────────┘
│Producer │───┼────▶│Topic:priceChanged│───┘
└─────────┘ │ │ └──────────────────┘ │
│ ┌──────────────────┐ ┌─────────┐
└──┼─▶│Topic:soldOut │─┼────▶│ConsumerB│
└──────────────────┘ └─────────┘
└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘

消息发送方称为Producer,消息接收方称为Consumer,Producer发送消息的时候,必须选择发送到哪个Topic。Consumer可以订阅自己感兴趣的Topic,从而只获得特定类型的消息。

使用消息系统实现观察者模式时,Producer和Consumer甚至经常不在同一台机器上,并且双方对对方完全一无所知,因为注册观察者这个动作本身都在消息系统中完成,而不是在Producer内部完成。

此外,注意到我们在编写观察者模式的时候,通知Observer是依靠语句:

1
observers.forEach(o -> o.onPublished(p));

这说明各个观察者是依次获得的同步通知,如果上一个观察者处理太慢,会导致下一个观察者不能及时获得通知。此外,如果观察者在处理通知的时候,发生了异常,还需要被观察者处理异常,才能保证继续通知下一个观察者。

思考:如何改成异步通知,使得所有观察者可以并发同时处理?

有的童鞋可能发现Java标准库有个java.util.Observable类和一个Observer接口,用来帮助我们实现观察者模式。但是,这个类非常不!好!用!实现观察者模式的时候,也不推荐借助这两个东东。

练习

Store增加一种类型的观察者,并把通知改为异步。

下载练习

小结

观察者模式,又称发布-订阅模式,是一种一对多的通知机制,使得双方无需关心对方,只关心通知本身。

状态

允许一个对象在其内部状态改变时改变它的行为。对象看起来似乎修改了它的类。

状态模式(State)经常用在带有状态的对象中。

什么是状态?我们以QQ聊天为例,一个用户的QQ有几种状态:

  • 离线状态(尚未登录);
  • 正在登录状态;
  • 在线状态;
  • 忙状态(暂时离开)。

如何表示状态?我们定义一个enum就可以表示不同的状态。但不同的状态需要对应不同的行为,比如收到消息时:

1
2
3
4
5
if (state == ONLINE) {
// 闪烁图标
} else if (state == BUSY) {
reply("现在忙,稍后回复");
} else if ...

状态模式的目的是为了把上述一大串if...else...的逻辑给分拆到不同的状态类中,使得将来增加状态比较容易。

例如,我们设计一个聊天机器人,它有两个状态:

  • 未连线;
  • 已连线。

对于未连线状态,我们收到消息也不回复:

1
2
3
4
5
6
7
8
9
public class DisconnectedState implements State {
public String init() {
return "Bye!";
}

public String reply(String input) {
return "";
}
}

对于已连线状态,我们回应收到的消息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class ConnectedState implements State {
public String init() {
return "Hello, I'm Bob.";
}

public String reply(String input) {
if (input.endsWith("?")) {
return "Yes. " + input.substring(0, input.length() - 1) + "!";
}
if (input.endsWith(".")) {
return input.substring(0, input.length() - 1) + "!";
}
return input.substring(0, input.length() - 1) + "?";
}
}

状态模式的关键设计思想在于状态切换,我们引入一个BotContext完成状态切换:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class BotContext {
private State state = new DisconnectedState();

public String chat(String input) {
if ("hello".equalsIgnoreCase(input)) {
// 收到hello切换到在线状态:
state = new ConnectedState();
return state.init();
} else if ("bye".equalsIgnoreCase(input)) {
/ 收到bye切换到离线状态:
state = new DisconnectedState();
return state.init();
}
return state.reply(input);
}
}

这样,一个价值千万的AI聊天机器人就诞生了:

1
2
3
4
5
6
7
8
Scanner scanner = new Scanner(System.in);
BotContext bot = new BotContext();
for (;;) {
System.out.print("> ");
String input = scanner.nextLine();
String output = bot.chat(input);
System.out.println(output.isEmpty() ? "(no reply)" : "< " + output);
}

试试效果:

1
2
3
4
5
6
7
8
> hello
< Hello, I'm Bob.
> Nice to meet you.
< Nice to meet you!
> Today is cold?
< Yes. Today is cold!
> bye
< Bye!

练习

新增BusyState状态表示忙碌。

下载练习

小结

状态模式的设计思想是把不同状态的逻辑分离到不同的状态类中,从而使得增加新状态更容易;

状态模式的实现关键在于状态转换。简单的状态转换可以直接由调用方指定,复杂的状态转换可以在内部根据条件触发完成。



定义一系列的算法,把它们一个个封装起来,并且使它们可相互替换。本模式使得算法可独立于使用它的客户而变化。

策略模式:Strategy,是指,定义一组算法,并把其封装到一个对象中。然后在运行时,可以灵活的使用其中的一个算法。

策略模式在Java标准库中应用非常广泛,我们以排序为例,看看如何通过Arrays.sort()实现忽略大小写排序:

1
2
3
4
5
6
7
8
9
import java.util.Arrays;

public class Main {
public static void main(String[] args) throws InterruptedException {
String[] array = { "apple", "Pear", "Banana", "orange" };
Arrays.sort(array, String::compareToIgnoreCase);
System.out.println(Arrays.toString(array));
}
}

如果我们想忽略大小写排序,就传入String::compareToIgnoreCase,如果我们想倒序排序,就传入(s1, s2) -> -s1.compareTo(s2),这个比较两个元素大小的算法就是策略。

我们观察Arrays.sort(T[] a, Comparator<? super T> c)这个排序方法,它在内部实现了TimSort排序,但是,排序算法在比较两个元素大小的时候,需要借助我们传入的Comparator对象,才能完成比较。因此,这里的策略是指比较两个元素大小的策略,可以是忽略大小写比较,可以是倒序比较,也可以根据字符串长度比较。

因此,上述排序使用到了策略模式,它实际上指,在一个方法中,流程是确定的,但是,某些关键步骤的算法依赖调用方传入的策略,这样,传入不同的策略,即可获得不同的结果,大大增强了系统的灵活性。

如果我们自己实现策略模式的排序,用冒泡法编写如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import java.util.*;

public class Main {
public static void main(String[] args) throws InterruptedException {
String[] array = { "apple", "Pear", "Banana", "orange" };
sort(array, String::compareToIgnoreCase);
System.out.println(Arrays.toString(array));
}

static <T> void sort(T[] a, Comparator<? super T> c) {
for (int i = 0; i < a.length - 1; i++) {
for (int j = 0; j < a.length - 1 - i; j++) {
if (c.compare(a[j], a[j + 1]) > 0) { // 注意这里比较两个元素的大小依赖传入的策略
T temp = a[j];
a[j] = a[j + 1];
a[j + 1] = temp;
}
}
}
}
}

一个完整的策略模式要定义策略以及使用策略的上下文。我们以购物车结算为例,假设网站针对普通会员、Prime会员有不同的折扣,同时活动期间还有一个满100减20的活动,这些就可以作为策略实现。先定义打折策略接口:

1
2
3
4
public interface DiscountStrategy {
// 计算折扣额度:
BigDecimal getDiscount(BigDecimal total);
}

接下来,就是实现各种策略。普通用户策略如下:

1
2
3
4
5
6
public class UserDiscountStrategy implements DiscountStrategy {
public BigDecimal getDiscount(BigDecimal total) {
// 普通会员打九折:
return total.multiply(new BigDecimal("0.1")).setScale(2, RoundingMode.DOWN);
}
}

满减策略如下:

1
2
3
4
5
6
public class OverDiscountStrategy implements DiscountStrategy {
public BigDecimal getDiscount(BigDecimal total) {
// 满100减20优惠:
return total.compareTo(BigDecimal.valueOf(100)) >= 0 ? BigDecimal.valueOf(20) : BigDecimal.ZERO;
}
}

最后,要应用策略,我们需要一个DiscountContext

1
2
3
4
5
6
7
8
9
10
11
12
13
public class DiscountContext {
// 持有某个策略:
private DiscountStrategy strategy = new UserDiscountStrategy();

// 允许客户端设置新策略:
public void setStrategy(DiscountStrategy strategy) {
this.strategy = strategy;
}

public BigDecimal calculatePrice(BigDecimal total) {
return total.subtract(this.strategy.getDiscount(total)).setScale(2);
}
}

调用方必须首先创建一个DiscountContext,并指定一个策略(或者使用默认策略),即可获得折扣后的价格:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
DiscountContext ctx = new DiscountContext();

// 默认使用普通会员折扣:
BigDecimal pay1 = ctx.calculatePrice(BigDecimal.valueOf(105));
System.out.println(pay1);

// 使用满减折扣:
ctx.setStrategy(new OverDiscountStrategy());
BigDecimal pay2 = ctx.calculatePrice(BigDecimal.valueOf(105));
System.out.println(pay2);

// 使用Prime会员折扣:
ctx.setStrategy(new PrimeDiscountStrategy());
BigDecimal pay3 = ctx.calculatePrice(BigDecimal.valueOf(105));
System.out.println(pay3);

上述完整的策略模式如下图所示:

1
2
3
4
5
6
7
8
9
10
11
12
13
┌───────────────┐      ┌─────────────────┐
│DiscountContext│─ ─ ─▶│DiscountStrategy │
└───────────────┘ └─────────────────┘

│ ┌─────────────────────┐
├─│UserDiscountStrategy │
│ └─────────────────────┘
│ ┌─────────────────────┐
├─│PrimeDiscountStrategy│
│ └─────────────────────┘
│ ┌─────────────────────┐
└─│OverDiscountStrategy │
└─────────────────────┘

策略模式的核心思想是在一个计算方法中把容易变化的算法抽出来作为“策略”参数传进去,从而使得新增策略不必修改原有逻辑。

练习

使用策略模式新增一种策略,允许在满100减20的基础上对Prime会员再打七折。

下载练习

小结

策略模式是为了允许调用方选择一个算法,从而通过不同策略实现不同的计算结果。

通过扩展策略,不必修改主逻辑,即可获得新策略的结果。

定义一个操作中的算法的骨架,而将一些步骤延迟到子类中,使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

模板方法(Template Method)是一个比较简单的模式。它的主要思想是,定义一个操作的一系列步骤,对于某些暂时确定不下来的步骤,就留给子类去实现好了,这样不同的子类就可以定义出不同的步骤。

因此,模板方法的核心在于定义一个“骨架”。我们还是举例说明。

假设我们开发了一个从数据库读取设置的类:

1
2
3
4
5
6
7
8
9
10
public class Setting {
public final String getSetting(String key) {
String value = readFromDatabase(key);
return value;
}

private String readFromDatabase(String key) {
// TODO: 从数据库读取
}
}

由于从数据库读取数据较慢,我们可以考虑把读取的设置缓存起来,这样下一次读取同样的key就不必再访问数据库了。但是怎么实现缓存,暂时没想好,但不妨碍我们先写出使用缓存的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public class Setting {
public final String getSetting(String key) {
// 先从缓存读取:
String value = lookupCache(key);
if (value == null) {
// 在缓存中未找到,从数据库读取:
value = readFromDatabase(key);
System.out.println("[DEBUG] load from db: " + key + " = " + value);
// 放入缓存:
putIntoCache(key, value);
} else {
System.out.println("[DEBUG] load from cache: " + key + " = " + value);
}
return value;
}
}

整个流程没有问题,但是,lookupCache(key)putIntoCache(key, value)这两个方法还根本没实现,怎么编译通过?这个不要紧,我们声明抽象方法就可以:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public abstract class AbstractSetting {
public final String getSetting(String key) {
String value = lookupCache(key);
if (value == null) {
value = readFromDatabase(key);
putIntoCache(key, value);
}
return value;
}

protected abstract String lookupCache(String key);

protected abstract void putIntoCache(String key, String value);
}

因为声明了抽象方法,自然整个类也必须是抽象类。如何实现lookupCache(key)putIntoCache(key, value)这两个方法就交给子类了。子类其实并不关心核心代码getSetting(key)的逻辑,它只需要关心如何完成两个小小的子任务就可以了。

假设我们希望用一个Map做缓存,那么可以写一个LocalSetting

1
2
3
4
5
6
7
8
9
10
11
public class LocalSetting extends AbstractSetting {
private Map<String, String> cache = new HashMap<>();

protected String lookupCache(String key) {
return cache.get(key);
}

protected void putIntoCache(String key, String value) {
cache.put(key, value);
}
}

如果我们要使用Redis做缓存,那么可以再写一个RedisSetting

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
public class RedisSetting extends AbstractSetting {
private RedisClient client = RedisClient.create("redis://localhost:6379");

protected String lookupCache(String key) {
try (StatefulRedisConnection<String, String> connection = client.connect()) {
RedisCommands<String, String> commands = connection.sync();
return commands.get(key);
}
}

protected void putIntoCache(String key, String value) {
try (StatefulRedisConnection<String, String> connection = client.connect()) {
RedisCommands<String, String> commands = connection.sync();
commands.set(key, value);
}
}
}

客户端代码使用本地缓存的代码这么写:

1
2
3
AbstractSetting setting1 = new LocalSetting();
System.out.println("test = " + setting1.getSetting("test"));
System.out.println("test = " + setting1.getSetting("test"));

要改成Redis缓存,只需要把LocalSetting替换为RedisSetting

1
2
3
AbstractSetting setting2 = new RedisSetting();
System.out.println("autosave = " + setting2.getSetting("autosave"));
System.out.println("autosave = " + setting2.getSetting("autosave"));

可见,模板方法的核心思想是:父类定义骨架,子类实现某些细节。

为了防止子类重写父类的骨架方法,可以在父类中对骨架方法使用final。对于需要子类实现的抽象方法,一般声明为protected,使得这些方法对外部客户端不可见。

Java标准库也有很多模板方法的应用。在集合类中,AbstractListAbstractQueuedSynchronizer都定义了很多通用操作,子类只需要实现某些必要方法。

练习

使用模板方法增加一个使用Guava Cache的子类。

下载练习

思考:能否将readFromDatabase()作为模板方法,使得子类可以选择从数据库读取还是从文件读取。

再思考如果既可以扩展缓存,又可以扩展底层存储,会不会出现子类数量爆炸的情况?如何解决?

小结

模板方法是一种高层定义骨架,底层实现细节的设计模式,适用于流程固定,但某些步骤不确定或可替换的情况。

表示一个作用于某对象结构中的各元素的操作。它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作。

访问者模式(Visitor)是一种操作一组对象的操作,它的目的是不改变对象的定义,但允许新增不同的访问者,来定义新的操作。

访问者模式的设计比较复杂,如果我们查看GoF原始的访问者模式,它是这么设计的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
   ┌─────────┐       ┌───────────────────────┐
│ Client │─ ─ ─ ▶│ Visitor │
└─────────┘ ├───────────────────────┤
│ │visitElementA(ElementA)│
│visitElementB(ElementB)│
│ └───────────────────────┘

│ ┌───────┴───────┐
│ │
│ ┌─────────────┐ ┌─────────────┐
│ VisitorA │ │ VisitorB │
│ └─────────────┘ └─────────────┘

┌───────────────┐ ┌───────────────┐
│ObjectStructure│─ ─ ─ ─▶│ Element │
├───────────────┤ ├───────────────┤
│handle(Visitor)│ │accept(Visitor)│
└───────────────┘ └───────────────┘

┌────────┴────────┐
│ │
┌───────────────┐ ┌───────────────┐
│ ElementA │ │ ElementB │
├───────────────┤ ├───────────────┤
│accept(Visitor)│ │accept(Visitor)│
│doA() │ │doB() │
└───────────────┘ └───────────────┘

上述模式的复杂之处在于上述访问者模式为了实现所谓的“双重分派”,设计了一个回调再回调的机制。因为Java只支持基于多态的单分派模式,这里强行模拟出“双重分派”反而加大了代码的复杂性。

这里我们只介绍简化的访问者模式。假设我们要递归遍历某个文件夹的所有子文件夹和文件,然后找出.java文件,正常的做法是写个递归:

1
2
3
4
5
6
7
8
9
10
void scan(File dir, List<File> collector) {
for (File file : dir.listFiles()) {
if (file.isFile() && file.getName().endsWith(".java")) {
collector.add(file);
} else if (file.isDir()) {
// 递归调用:
scan(file, collector);
}
}
}

上述代码的问题在于,扫描目录的逻辑和处理.java文件的逻辑混在了一起。如果下次需要增加一个清理.class文件的功能,就必须再重复写扫描逻辑。

因此,访问者模式先把数据结构(这里是文件夹和文件构成的树型结构)和对其的操作(查找文件)分离开,以后如果要新增操作(例如清理.class文件),只需要新增访问者,不需要改变现有逻辑。

用访问者模式改写上述代码步骤如下:

首先,我们需要定义访问者接口,即该访问者能够干的事情:

1
2
3
4
5
6
public interface Visitor {
// 访问文件夹:
void visitDir(File dir);
// 访问文件:
void visitFile(File file);
}

紧接着,我们要定义能持有文件夹和文件的数据结构FileStructure

1
2
3
4
5
6
7
public class FileStructure {
// 根目录:
private File path;
public FileStructure(File path) {
this.path = path;
}
}

然后,我们给FileStructure增加一个handle()方法,传入一个访问者:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
public class FileStructure {
...

public void handle(Visitor visitor) {
scan(this.path, visitor);
}

private void scan(File file, Visitor visitor) {
if (file.isDirectory()) {
// 让访问者处理文件夹:
visitor.visitDir(file);
for (File sub : file.listFiles()) {
// 递归处理子文件夹:
scan(sub, visitor);
}
} else if (file.isFile()) {
// 让访问者处理文件:
visitor.visitFile(file);
}
}
}

这样,我们就把访问者的行为抽象出来了。如果我们要实现一种操作,例如,查找.java文件,就传入JavaFileVisitor

1
2
FileStructure fs = new FileStructure(new File("."));
fs.handle(new JavaFileVisitor());

这个JavaFileVisitor实现如下:

1
2
3
4
5
6
7
8
9
10
11
public class JavaFileVisitor implements Visitor {
public void visitDir(File dir) {
System.out.println("Visit dir: " + dir);
}

public void visitFile(File file) {
if (file.getName().endsWith(".java")) {
System.out.println("Found java file: " + file);
}
}
}

类似的,如果要清理.class文件,可以再写一个ClassFileClearnerVisitor

1
2
3
4
5
6
7
8
9
10
public class ClassFileCleanerVisitor implements Visitor {
public void visitDir(File dir) {
}

public void visitFile(File file) {
if (file.getName().endsWith(".class")) {
System.out.println("Will clean class file: " + file);
}
}
}

可见,访问者模式的核心思想是为了访问比较复杂的数据结构,不去改变数据结构,而是把对数据的操作抽象出来,在“访问”的过程中以回调形式在访问者中处理操作逻辑。如果要新增一组操作,那么只需要增加一个新的访问者。

实际上,Java标准库提供的Files.walkFileTree()已经实现了一个访问者模式:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

public class Main {
public static void main(String[] args) throws IOException {
Files.walkFileTree(Paths.get("."), new MyFileVisitor());
}
}

// 实现一个FileVisitor:
class MyFileVisitor extends SimpleFileVisitor<Path> {
// 处理Directory:
public FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException {
System.out.println("pre visit dir: " + dir);
// 返回CONTINUE表示继续访问:
return FileVisitResult.CONTINUE;
}

// 处理File:
public FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {
System.out.println("visit file: " + file);
// 返回CONTINUE表示继续访问:
return FileVisitResult.CONTINUE;
}
}

Files.walkFileTree()允许访问者返回FileVisitResult.CONTINUE以便继续访问,或者返回FileVisitResult.TERMINATE停止访问。

类似的,对XML的SAX处理也是一个访问者模式,我们需要提供一个SAX Handler作为访问者处理XML的各个节点。

练习

使用访问者模式递归遍历文件夹。

下载练习

小结

访问者模式是为了抽象出作用于一组复杂对象的操作,并且后续可以新增操作而不必对现有的对象结构做任何改动。

留言與分享

结构型模式主要涉及如何组合各种对象以便获得更好、更灵活的结构。虽然面向对象的继承机制提供了最基本的子类扩展父类的功能,但结构型模式不仅仅简单地使用继承,而更多地通过组合与运行期的动态组合来实现更灵活的功能。

结构型模式有:

  • 适配器
  • 桥接
  • 组合
  • 装饰器
  • 外观
  • 享元
  • 代理

将一个类的接口转换成客户希望的另外一个接口,使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。

适配器模式是Adapter,也称Wrapper,是指如果一个接口需要B接口,但是待传入的对象却是A接口,怎么办?

我们举个例子。如果去美国,我们随身带的电器是无法直接使用的,因为美国的插座标准和中国不同,所以,我们需要一个适配器:

adapter

在程序设计中,适配器也是类似的。我们已经有一个Task类,实现了Callable接口:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
public class Task implements Callable<Long> {
private long num;
public Task(long num) {
this.num = num;
}

public Long call() throws Exception {
long r = 0;
for (long n = 1; n <= this.num; n++) {
r = r + n;
}
System.out.println("Result: " + r);
return r;
}
}

现在,我们想通过一个线程去执行它:

1
2
3
Callable<Long> callable = new Task(123450000L);
Thread thread = new Thread(callable); // compile error!
thread.start();

发现编译不过!因为Thread接收Runnable接口,但不接收Callable接口,肿么办?

一个办法是改写Task类,把实现的Callable改为Runnable,但这样做不好,因为Task很可能在其他地方作为Callable被引用,改写Task的接口,会导致其他正常工作的代码无法编译。

另一个办法不用改写Task类,而是用一个Adapter,把这个Callable接口“变成”Runnable接口,这样,就可以正常编译:

1
2
3
Callable<Long> callable = new Task(123450000L);
Thread thread = new Thread(new RunnableAdapter(callable));
thread.start();

这个RunnableAdapter类就是Adapter,它接收一个Callable,输出一个Runnable。怎么实现这个RunnableAdapter呢?我们先看完整的代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
public class RunnableAdapter implements Runnable {
// 引用待转换接口:
private Callable<?> callable;

public RunnableAdapter(Callable<?> callable) {
this.callable = callable;
}

// 实现指定接口:
public void run() {
// 将指定接口调用委托给转换接口调用:
try {
callable.call();
} catch (Exception e) {
throw new RuntimeException(e);
}
}
}

编写一个Adapter的步骤如下:

  1. 实现目标接口,这里是Runnable
  2. 内部持有一个待转换接口的引用,这里是通过字段持有Callable接口;
  3. 在目标接口的实现方法内部,调用待转换接口的方法。

这样一来,Thread就可以接收这个RunnableAdapter,因为它实现了Runnable接口。Thread作为调用方,它会调用RunnableAdapterrun()方法,在这个run()方法内部,又调用了Callablecall()方法,相当于Thread通过一层转换,间接调用了Callablecall()方法。

适配器模式在Java标准库中有广泛应用。比如我们持有数据类型是String[],但是需要List接口时,可以用一个Adapter:

1
2
String[] exist = new String[] {"Good", "morning", "Bob", "and", "Alice"};
Set<String> set = new HashSet<>(Arrays.asList(exist));

注意到List<T> Arrays.asList(T[])就相当于一个转换器,它可以把数组转换为List

我们再看一个例子:假设我们持有一个InputStream,希望调用readText(Reader)方法,但它的参数类型是Reader而不是InputStream,怎么办?

当然是使用适配器,把InputStream“变成”Reader

1
2
3
InputStream input = Files.newInputStream(Paths.get("/path/to/file"));
Reader reader = new InputStreamReader(input, "UTF-8");
readText(reader);

InputStreamReader就是Java标准库提供的Adapter,它负责把一个InputStream适配为Reader。类似的还有OutputStreamWriter

如果我们把readText(Reader)方法参数从Reader改为FileReader,会有什么问题?这个时候,因为我们需要一个FileReader类型,就必须把InputStream适配为FileReader

1
FileReader reader = new InputStreamReader(input, "UTF-8"); // compile error!

直接使用InputStreamReader这个Adapter是不行的,因为它只能转换出Reader接口。事实上,要把InputStream转换为FileReader也不是不可能,但需要花费十倍以上的功夫。这时,面向抽象编程这一原则就体现出了威力:持有高层接口不但代码更灵活,而且把各种接口组合起来也更容易。一旦持有某个具体的子类类型,要想做一些改动就非常困难。

练习

使用Adapter模式将Callable接口适配为Runnable

下载练习

小结

Adapter模式可以将一个A接口转换为B接口,使得新的对象符合B接口规范。

编写Adapter实际上就是编写一个实现了B接口,并且内部持有A接口的类:

1
2
3
4
5
6
7
8
9
public BAdapter implements B {
private A a;
public BAdapter(A a) {
this.a = a;
}
public void b() {
a.a();
}
}

在Adapter内部将B接口的调用“转换”为对A接口的调用。

只有A、B接口均为抽象接口时,才能非常简单地实现Adapter模式。

将抽象部分与它的实现部分分离,使它们都可以独立地变化。

桥接模式的定义非常玄乎,直接理解不太容易,所以我们还是举例子。

假设某个汽车厂商生产三种品牌的汽车:Big、Tiny和Boss,每种品牌又可以选择燃油、纯电和混合动力。如果用传统的继承来表示各个最终车型,一共有3个抽象类加9个最终子类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
                   ┌───────┐
│ Car │
└───────┘

┌──────────────────┼───────────────────┐
│ │ │
┌───────┐ ┌───────┐ ┌───────┐
│BigCar │ │TinyCar│ │BossCar│
└───────┘ └───────┘ └───────┘
▲ ▲ ▲
│ │ │
│ ┌───────────────┐│ ┌───────────────┐│ ┌───────────────┐
├─│ BigFuelCar │├─│ TinyFuelCar │├─│ BossFuelCar │
│ └───────────────┘│ └───────────────┘│ └───────────────┘
│ ┌───────────────┐│ ┌───────────────┐│ ┌───────────────┐
├─│BigElectricCar │├─│TinyElectricCar│├─│BossElectricCar│
│ └───────────────┘│ └───────────────┘│ └───────────────┘
│ ┌───────────────┐│ ┌───────────────┐│ ┌───────────────┐
└─│ BigHybridCar │└─│ TinyHybridCar │└─│ BossHybridCar │
└───────────────┘ └───────────────┘ └───────────────┘

如果要新增一个品牌,或者加一个新的引擎(比如核动力),那么子类的数量增长更快。

所以,桥接模式就是为了避免直接继承带来的子类爆炸。

我们来看看桥接模式如何解决上述问题。

在桥接模式中,首先把Car按品牌进行子类化,但是,每个品牌选择什么发动机,不再使用子类扩充,而是通过一个抽象的“修正”类,以组合的形式引入。我们来看看具体的实现。

首先定义抽象类Car,它引用一个Engine

1
2
3
4
5
6
7
8
9
10
public abstract class Car {
// 引用Engine:
protected Engine engine;

public Car(Engine engine) {
this.engine = engine;
}

public abstract void drive();
}

Engine的定义如下:

1
2
3
public interface Engine {
void start();
}

紧接着,在一个“修正”的抽象类RefinedCar中定义一些额外操作:

1
2
3
4
5
6
7
8
9
10
11
12
public abstract class RefinedCar extends Car {
public RefinedCar(Engine engine) {
super(engine);
}

public void drive() {
this.engine.start();
System.out.println("Drive " + getBrand() + " car...");
}

public abstract String getBrand();
}

这样一来,最终的不同品牌继承自RefinedCar,例如BossCar

1
2
3
4
5
6
7
8
9
public class BossCar extends RefinedCar {
public BossCar(Engine engine) {
super(engine);
}

public String getBrand() {
return "Boss";
}
}

而针对每一种引擎,继承自Engine,例如HybridEngine

1
2
3
4
5
public class HybridEngine implements Engine {
public void start() {
System.out.println("Start Hybrid Engine...");
}
}

客户端通过自己选择一个品牌,再配合一种引擎,得到最终的Car:

1
2
RefinedCar car = new BossCar(new HybridEngine());
car.drive();

使用桥接模式的好处在于,如果要增加一种引擎,只需要针对Engine派生一个新的子类,如果要增加一个品牌,只需要针对RefinedCar派生一个子类,任何RefinedCar的子类都可以和任何一种Engine自由组合,即一辆汽车的两个维度:品牌和引擎都可以独立地变化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
       ┌───────────┐
│ Car │
└───────────┘


┌───────────┐ ┌─────────┐
│RefinedCar │ ─ ─ ─▶│ Engine │
└───────────┘ └─────────┘
▲ ▲
┌────────┼────────┐ │ ┌──────────────┐
│ │ │ ├─│ FuelEngine │
┌───────┐┌───────┐┌───────┐ │ └──────────────┘
│BigCar ││TinyCar││BossCar│ │ ┌──────────────┐
└───────┘└───────┘└───────┘ ├─│ElectricEngine│
│ └──────────────┘
│ ┌──────────────┐
└─│ HybridEngine │
└──────────────┘

桥接模式实现比较复杂,实际应用也非常少,但它提供的设计思想值得借鉴,即不要过度使用继承,而是优先拆分某些部件,使用组合的方式来扩展功能。

练习

使用桥接模式扩展一种新的品牌和新的核动力引擎。

下载练习

小结

桥接模式通过分离一个抽象接口和它的实现部分,使得设计可以按两个维度独立扩展。

组合

将对象组合成树形结构以表示“部分-整体”的层次结构,使得用户对单个对象和组合对象的使用具有一致性。

组合模式(Composite)经常用于树形结构,为了简化代码,使用Composite可以把一个叶子节点与一个父节点统一起来处理。

我们来看一个具体的例子。在XML或HTML中,从根节点开始,每个节点都可能包含任意个其他节点,这些层层嵌套的节点就构成了一颗树。

要以树的结构表示XML,我们可以先抽象出节点类型Node

1
2
3
4
5
6
7
8
public interface Node {
// 添加一个节点为子节点:
Node add(Node node);
// 获取子节点:
List<Node> children();
// 输出为XML:
String toXml();
}

对于一个<abc>这样的节点,我们称之为ElementNode,它可以作为容器包含多个子节点:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
public class ElementNode implements Node {
private String name;
private List<Node> list = new ArrayList<>();

public ElementNode(String name) {
this.name = name;
}

public Node add(Node node) {
list.add(node);
return this;
}

public List<Node> children() {
return list;
}

public String toXml() {
String start = "<" + name + ">\n";
String end = "</" + name + ">\n";
StringJoiner sj = new StringJoiner("", start, end);
list.forEach(node -> {
sj.add(node.toXml() + "\n");
});
return sj.toString();
}
}

对于普通文本,我们把它看作TextNode,它没有子节点:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class TextNode implements Node {
private String text;

public TextNode(String text) {
this.text = text;
}

public Node add(Node node) {
throw new UnsupportedOperationException();
}

public List<Node> children() {
return List.of();
}

public String toXml() {
return text;
}
}

此外,还可以有注释节点:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
public class CommentNode implements Node {
private String text;

public CommentNode(String text) {
this.text = text;
}

public Node add(Node node) {
throw new UnsupportedOperationException();
}

public List<Node> children() {
return List.of();
}

public String toXml() {
return "<!-- " + text + " -->";
}
}

通过ElementNodeTextNodeCommentNode,我们就可以构造出一颗树:

1
2
3
4
5
6
7
8
9
Node root = new ElementNode("school");
root.add(new ElementNode("classA")
.add(new TextNode("Tom"))
.add(new TextNode("Alice")));
root.add(new ElementNode("classB")
.add(new TextNode("Bob"))
.add(new TextNode("Grace"))
.add(new CommentNode("comment...")));
System.out.println(root.toXml());

最后通过root节点输出的XML如下:

1
2
3
4
5
6
7
8
9
10
11
<school>
<classA>
Tom
Alice
</classA>
<classB>
Bob
Grace
<!-- comment... -->
</classB>
</school>

可见,使用Composite模式时,需要先统一单个节点以及“容器”节点的接口:

1
2
3
4
5
6
7
8
9
             ┌───────────┐
│ Node │
└───────────┘

┌────────────┼────────────┐
│ │ │
┌───────────┐┌───────────┐┌───────────┐
│ElementNode││ TextNode ││CommentNode│
└───────────┘└───────────┘└───────────┘

作为容器节点的ElementNode又可以添加任意个Node,这样就可以构成层级结构。

类似的,像文件夹和文件、GUI窗口的各种组件,都符合Composite模式的定义,因为它们的结构天生就是层级结构。

练习

使用Composite模式构造XML。

下载练习

小结

Composite模式使得叶子对象和容器对象具有一致性,从而形成统一的树形结构,并用一致的方式去处理它们。



动态地给一个对象添加一些额外的职责。就增加功能来说,相比生成子类更为灵活。

装饰器(Decorator)模式,是一种在运行期动态给某个对象的实例增加功能的方法。

我们在IO的Filter模式一节中其实已经讲过装饰器模式了。在Java标准库中,InputStream是抽象类,FileInputStreamServletInputStreamSocket.getInputStream()这些InputStream都是最终数据源。

现在,如果要给不同的最终数据源增加缓冲功能、计算签名功能、加密解密功能,那么,3个最终数据源、3种功能一共需要9个子类。如果继续增加最终数据源,或者增加新功能,子类会爆炸式增长,这种设计方式显然是不可取的。

Decorator模式的目的就是把一个一个的附加功能,用Decorator的方式给一层一层地累加到原始数据源上,最终,通过组合获得我们想要的功能。

例如:给FileInputStream增加缓冲和解压缩功能,用Decorator模式写出来如下:

1
2
3
4
5
6
// 创建原始的数据源:
InputStream fis = new FileInputStream("test.gz");
// 增加缓冲功能:
InputStream bis = new BufferedInputStream(fis);
// 增加解压缩功能:
InputStream gis = new GZIPInputStream(bis);

或者一次性写成这样:

1
2
3
4
InputStream input = new GZIPInputStream( // 第二层装饰
new BufferedInputStream( // 第一层装饰
new FileInputStream("test.gz") // 核心功能
));

观察BufferedInputStreamGZIPInputStream,它们实际上都是从FilterInputStream继承的,这个FilterInputStream就是一个抽象的Decorator。我们用图把Decorator模式画出来如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
             ┌───────────┐
│ Component │
└───────────┘

┌────────────┼─────────────────┐
│ │ │
┌───────────┐┌───────────┐ ┌───────────┐
│ComponentA ││ComponentB │... │ Decorator │
└───────────┘└───────────┘ └───────────┘

┌──────┴──────┐
│ │
┌───────────┐ ┌───────────┐
│DecoratorA │ │DecoratorB │...
└───────────┘ └───────────┘

最顶层的Component是接口,对应到IO的就是InputStream这个抽象类。ComponentA、ComponentB是实际的子类,对应到IO的就是FileInputStreamServletInputStream这些数据源。Decorator是用于实现各个附加功能的抽象装饰器,对应到IO的就是FilterInputStream。而从Decorator派生的就是一个一个的装饰器,它们每个都有独立的功能,对应到IO的就是BufferedInputStreamGZIPInputStream等。

Decorator模式有什么好处?它实际上把核心功能和附加功能给分开了。核心功能指FileInputStream这些真正读数据的源头,附加功能指加缓冲、压缩、解密这些功能。如果我们要新增核心功能,就增加Component的子类,例如ByteInputStream。如果我们要增加附加功能,就增加Decorator的子类,例如CipherInputStream。两部分都可以独立地扩展,而具体如何附加功能,由调用方自由组合,从而极大地增强了灵活性。

如果我们要自己设计完整的Decorator模式,应该如何设计?

我们还是举个栗子:假设我们需要渲染一个HTML的文本,但是文本还可以附加一些效果,比如加粗、变斜体、加下划线等。为了实现动态附加效果,可以采用Decorator模式。

首先,仍然需要定义顶层接口TextNode

1
2
3
4
5
6
public interface TextNode {
// 设置text:
void setText(String text);
// 获取text:
String getText();
}

对于核心节点,例如<span>,它需要从TextNode直接继承:

1
2
3
4
5
6
7
8
9
10
11
public class SpanNode implements TextNode {
private String text;

public void setText(String text) {
this.text = text;
}

public String getText() {
return "<span>" + text + "</span>";
}
}

紧接着,为了实现Decorator模式,需要有一个抽象的Decorator类:

1
2
3
4
5
6
7
8
9
10
11
public abstract class NodeDecorator implements TextNode {
protected final TextNode target;

protected NodeDecorator(TextNode target) {
this.target = target;
}

public void setText(String text) {
this.target.setText(text);
}
}

这个NodeDecorator类的核心是持有一个TextNode,即将要把功能附加到的TextNode实例。接下来就可以写一个加粗功能:

1
2
3
4
5
6
7
8
9
public class BoldDecorator extends NodeDecorator {
public BoldDecorator(TextNode target) {
super(target);
}

public String getText() {
return "<b>" + target.getText() + "</b>";
}
}

类似的,可以继续加ItalicDecoratorUnderlineDecorator等。客户端可以自由组合这些Decorator:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
TextNode n1 = new SpanNode();
TextNode n2 = new BoldDecorator(new UnderlineDecorator(new SpanNode()));
TextNode n3 = new ItalicDecorator(new BoldDecorator(new SpanNode()));
n1.setText("Hello");
n2.setText("Decorated");
n3.setText("World");
System.out.println(n1.getText());
// 输出<span>Hello</span>

System.out.println(n2.getText());
// 输出<b><u><span>Decorated</span></u></b>

System.out.println(n3.getText());
// 输出<i><b><span>World</span></b></i>

练习

使用Decorator添加一个<del>标签表示删除。

下载练习

小结

使用Decorator模式,可以独立增加核心功能,也可以独立增加附加功能,二者互不影响;

可以在运行期动态地给核心功能增加任意个附加功能。

外观

为子系统中的一组接口提供一个一致的界面。Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。

外观模式,即Facade,是一个比较简单的模式。它的基本思想如下:

如果客户端要跟许多子系统打交道,那么客户端需要了解各个子系统的接口,比较麻烦。如果有一个统一的“中介”,让客户端只跟中介打交道,中介再去跟各个子系统打交道,对客户端来说就比较简单。所以Facade就相当于搞了一个中介。

我们以注册公司为例,假设注册公司需要三步:

  1. 向工商局申请公司营业执照;
  2. 在银行开设账户;
  3. 在税务局开设纳税号。

以下是三个系统的接口:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 工商注册:
public class AdminOfIndustry {
public Company register(String name) {
...
}
}

// 银行开户:
public class Bank {
public String openAccount(String companyId) {
...
}
}

// 纳税登记:
public class Taxation {
public String applyTaxCode(String companyId) {
...
}
}

如果子系统比较复杂,并且客户对流程也不熟悉,那就把这些流程全部委托给中介:

1
2
3
4
5
6
7
8
9
10
public class Facade {
public Company openCompany(String name) {
Company c = this.admin.register(name);
String bankAccount = this.bank.openAccount(c.getId());
c.setBankAccount(bankAccount);
String taxCode = this.taxation.applyTaxCode(c.getId());
c.setTaxCode(taxCode);
return c;
}
}

这样,客户端只跟Facade打交道,一次完成公司注册的所有繁琐流程:

1
Company c = facade.openCompany("Facade Software Ltd.");

很多Web程序,内部有多个子系统提供服务,经常使用一个统一的Facade入口,例如一个RestApiController,使得外部用户调用的时候,只关心Facade提供的接口,不用管内部到底是哪个子系统处理的。

更复杂的Web程序,会有多个Web服务,这个时候,经常会使用一个统一的网关入口来自动转发到不同的Web服务,这种提供统一入口的网关就是Gateway,它本质上也是一个Facade,但可以附加一些用户认证、限流限速的额外服务。

练习

使用Facade模式实现一个注册公司的“中介”服务。

下载练习

小结

Facade模式是为了给客户端提供一个统一入口,并对外屏蔽内部子系统的调用细节。



享元

运用共享技术有效地支持大量细粒度的对象。

享元(Flyweight)的核心思想很简单:如果一个对象实例一经创建就不可变,那么反复创建相同的实例就没有必要,直接向调用方返回一个共享的实例就行,这样即节省内存,又可以减少创建对象的过程,提高运行速度。

享元模式在Java标准库中有很多应用。我们知道,包装类型如ByteInteger都是不变类,因此,反复创建同一个值相同的包装类型是没有必要的。以Integer为例,如果我们通过Integer.valueOf()这个静态工厂方法创建Integer实例,当传入的int范围在-128~+127之间时,会直接返回缓存的Integer实例:

1
2
3
4
5
6
7
8
// 享元模式
public class Main {
public static void main(String[] args) throws InterruptedException {
Integer n1 = Integer.valueOf(100);
Integer n2 = Integer.valueOf(100);
System.out.println(n1 == n2); // true
}
}

对于Byte来说,因为它一共只有256个状态,所以,通过Byte.valueOf()创建的Byte实例,全部都是缓存对象。

因此,享元模式就是通过工厂方法创建对象,在工厂方法内部,很可能返回缓存的实例,而不是新创建实例,从而实现不可变实例的复用。

提示

总是使用工厂方法而不是new操作符创建实例,可获得享元模式的好处。

在实际应用中,享元模式主要应用于缓存,即客户端如果重复请求某些对象,不必每次查询数据库或者读取文件,而是直接返回内存中缓存的数据。

我们以Student为例,设计一个静态工厂方法,它在内部可以返回缓存的对象:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
public class Student {
// 持有缓存:
private static final Map<String, Student> cache = new HashMap<>();

// 静态工厂方法:
public static Student create(int id, String name) {
String key = id + "\n" + name;
// 先查找缓存:
Student std = cache.get(key);
if (std == null) {
// 未找到,创建新对象:
System.out.println(String.format("create new Student(%s, %s)", id, name));
std = new Student(id, name);
// 放入缓存:
cache.put(key, std);
} else {
// 缓存中存在:
System.out.println(String.format("return cached Student(%s, %s)", std.id, std.name));
}
return std;
}

private final int id;
private final String name;

public Student(int id, String name) {
this.id = id;
this.name = name;
}
}

在实际应用中,我们经常使用成熟的缓存库,例如GuavaCache,因为它提供了最大缓存数量限制、定时过期等实用功能。

练习

使用享元模式实现缓存。

下载练习

小结

享元模式的设计思想是尽量复用已创建的对象,常用于工厂方法内部的优化。



为其他对象提供一种代理以控制对这个对象的访问。

代理模式,即Proxy,它和Adapter模式很类似。我们先回顾Adapter模式,它用于把A接口转换为B接口:

1
2
3
4
5
6
7
8
9
public class BAdapter implements B {
private A a;
public BAdapter(A a) {
this.a = a;
}
public void b() {
a.a();
}
}

而Proxy模式不是把A接口转换成B接口,它还是转换成A接口:

1
2
3
4
5
6
7
8
9
public class AProxy implements A {
private A a;
public AProxy(A a) {
this.a = a;
}
public void a() {
this.a.a();
}
}

合着Proxy就是为了给A接口再包一层,这不是脱了裤子放屁吗?

当然不是。我们观察Proxy的实现A接口的方法:

1
2
3
public void a() {
this.a.a();
}

这样写当然没啥卵用。但是,如果我们在调用a.a()的前后,加一些额外的代码:

1
2
3
4
5
6
7
public void a() {
if (getCurrentUser().isRoot()) {
this.a.a();
} else {
throw new SecurityException("Forbidden");
}
}

这样一来,我们就实现了权限检查,只有符合要求的用户,才会真正调用目标方法,否则,会直接抛出异常。

有的童鞋会问,为啥不把权限检查的功能直接写到目标实例A的内部?

因为我们编写代码的原则有:

  • 职责清晰:一个类只负责一件事;
  • 易于测试:一次只测一个功能。

用Proxy实现这个权限检查,我们可以获得更清晰、更简洁的代码:

  • A接口:只定义接口;
  • ABusiness类:只实现A接口的业务逻辑;
  • APermissionProxy类:只实现A接口的权限检查代理。

如果我们希望编写其他类型的代理,可以继续增加类似ALogProxy,而不必对现有的A接口、ABusiness类进行修改。

实际上权限检查只是代理模式的一种应用。Proxy还广泛应用在:

远程代理

远程代理即Remote Proxy,本地的调用者持有的接口实际上是一个代理,这个代理负责把对接口的方法访问转换成远程调用,然后返回结果。Java内置的RMI机制就是一个完整的远程代理模式。

虚代理

虚代理即Virtual Proxy,它让调用者先持有一个代理对象,但真正的对象尚未创建。如果没有必要,这个真正的对象是不会被创建的,直到客户端需要真的必须调用时,才创建真正的对象。JDBC的连接池返回的JDBC连接(Connection对象)就可以是一个虚代理,即获取连接时根本没有任何实际的数据库连接,直到第一次执行JDBC查询或更新操作时,才真正创建实际的JDBC连接。

保护代理

保护代理即Protection Proxy,它用代理对象控制对原始对象的访问,常用于鉴权。

智能引用

智能引用即Smart Reference,它也是一种代理对象,如果有很多客户端对它进行访问,通过内部的计数器可以在外部调用者都不使用后自动释放它。

我们来看一下如何应用代理模式编写一个JDBC连接池(DataSource)。我们首先来编写一个虚代理,即如果调用者获取到Connection后,并没有执行任何SQL操作,那么这个Connection Proxy实际上并不会真正打开JDBC连接。调用者代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
DataSource lazyDataSource = new LazyDataSource(jdbcUrl, jdbcUsername, jdbcPassword);
System.out.println("get lazy connection...");
try (Connection conn1 = lazyDataSource.getConnection()) {
// 并没有实际打开真正的Connection
}
System.out.println("get lazy connection...");
try (Connection conn2 = lazyDataSource.getConnection()) {
try (PreparedStatement ps = conn2.prepareStatement("SELECT * FROM students")) { // 打开了真正的Connection
try (ResultSet rs = ps.executeQuery()) {
while (rs.next()) {
System.out.println(rs.getString("name"));
}
}
}
}

现在我们来思考如何实现这个LazyConnectionProxy。为了简化代码,我们首先针对Connection接口做一个抽象的代理类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public abstract class AbstractConnectionProxy implements Connection {

// 抽象方法获取实际的Connection:
protected abstract Connection getRealConnection();

// 实现Connection接口的每一个方法:
public Statement createStatement() throws SQLException {
return getRealConnection().createStatement();
}

public PreparedStatement prepareStatement(String sql) throws SQLException {
return getRealConnection().prepareStatement(sql);
}

...其他代理方法...
}

这个AbstractConnectionProxy代理类的作用是把Connection接口定义的方法全部实现一遍,因为Connection接口定义的方法太多了,后面我们要编写的LazyConnectionProxy只需要继承AbstractConnectionProxy,就不必再把Connection接口方法挨个实现一遍。

LazyConnectionProxy实现如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class LazyConnectionProxy extends AbstractConnectionProxy {
private Supplier<Connection> supplier;
private Connection target = null;

public LazyConnectionProxy(Supplier<Connection> supplier) {
this.supplier = supplier;
}

// 覆写close方法:只有target不为null时才需要关闭:
public void close() throws SQLException {
if (target != null) {
System.out.println("Close connection: " + target);
super.close();
}
}

@Override
protected Connection getRealConnection() {
if (target == null) {
target = supplier.get();
}
return target;
}
}

如果调用者没有执行任何SQL语句,那么target字段始终为null。只有第一次执行SQL语句时(即调用任何类似prepareStatement()方法时,触发getRealConnection()调用),才会真正打开实际的JDBC Connection。

最后,我们还需要编写一个LazyDataSource来支持这个LazyConnectionProxy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
public class LazyDataSource implements DataSource {
private String url;
private String username;
private String password;

public LazyDataSource(String url, String username, String password) {
this.url = url;
this.username = username;
this.password = password;
}

public Connection getConnection(String username, String password) throws SQLException {
return new LazyConnectionProxy(() -> {
try {
Connection conn = DriverManager.getConnection(url, username, password);
System.out.println("Open connection: " + conn);
return conn;
} catch (SQLException e) {
throw new RuntimeException(e);
}
});
}
...
}

我们执行代码,输出如下:

1
2
3
4
5
6
7
8
9
get lazy connection...
get lazy connection...
Open connection: com.mysql.jdbc.JDBC4Connection@7a36aefa
小明
小红
小军
小白
...
Close connection: com.mysql.jdbc.JDBC4Connection@7a36aefa

可见第一个getConnection()调用获取到的LazyConnectionProxy并没有实际打开真正的JDBC Connection。

使用连接池的时候,我们更希望能重复使用连接。如果调用方编写这样的代码:

1
2
3
4
5
6
7
8
9
DataSource pooledDataSource = new PooledDataSource(jdbcUrl, jdbcUsername, jdbcPassword);
try (Connection conn = pooledDataSource.getConnection()) {
}
try (Connection conn = pooledDataSource.getConnection()) {
// 获取到的是同一个Connection
}
try (Connection conn = pooledDataSource.getConnection()) {
// 获取到的是同一个Connection
}

调用方并不关心是否复用了Connection,但从PooledDataSource获取的Connection确实自带这个优化功能。如何实现可复用Connection的连接池?答案仍然是使用代理模式。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class PooledConnectionProxy extends AbstractConnectionProxy {
// 实际的Connection:
Connection target;
// 空闲队列:
Queue<PooledConnectionProxy> idleQueue;

public PooledConnectionProxy(Queue<PooledConnectionProxy> idleQueue, Connection target) {
this.idleQueue = idleQueue;
this.target = target;
}

public void close() throws SQLException {
System.out.println("Fake close and released to idle queue for future reuse: " + target);
// 并没有调用实际Connection的close()方法,
// 而是把自己放入空闲队列:
idleQueue.offer(this);
}

protected Connection getRealConnection() {
return target;
}
}

复用连接的关键在于覆写close()方法,它并没有真正关闭底层JDBC连接,而是把自己放回一个空闲队列,以便下次使用。

空闲队列由PooledDataSource负责维护:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
public class PooledDataSource implements DataSource {
private String url;
private String username;
private String password;

// 维护一个空闲队列:
private Queue<PooledConnectionProxy> idleQueue = new ArrayBlockingQueue<>(100);

public PooledDataSource(String url, String username, String password) {
this.url = url;
this.username = username;
this.password = password;
}

public Connection getConnection(String username, String password) throws SQLException {
// 首先试图获取一个空闲连接:
PooledConnectionProxy conn = idleQueue.poll();
if (conn == null) {
// 没有空闲连接时,打开一个新连接:
conn = openNewConnection();
} else {
System.out.println("Return pooled connection: " + conn.target);
}
return conn;
}

private PooledConnectionProxy openNewConnection() throws SQLException {
Connection conn = DriverManager.getConnection(url, username, password);
System.out.println("Open new connection: " + conn);
return new PooledConnectionProxy(idleQueue, conn);
}
...
}

我们执行调用方代码,输出如下:

1
2
3
4
5
6
Open new connection: com.mysql.jdbc.JDBC4Connection@61ca2dfa
Fake close and released to idle queue for future reuse: com.mysql.jdbc.JDBC4Connection@61ca2dfa
Return pooled connection: com.mysql.jdbc.JDBC4Connection@61ca2dfa
Fake close and released to idle queue for future reuse: com.mysql.jdbc.JDBC4Connection@61ca2dfa
Return pooled connection: com.mysql.jdbc.JDBC4Connection@61ca2dfa
Fake close and released to idle queue for future reuse: com.mysql.jdbc.JDBC4Connection@61ca2dfa

除了第一次打开了一个真正的JDBC Connection,后续获取的Connection实际上是同一个JDBC Connection。但是,对于调用方来说,完全不需要知道底层做了哪些优化。

我们实际使用的DataSource,例如HikariCP,都是基于代理模式实现的,原理同上,但增加了更多的如动态伸缩的功能(一个连接空闲一段时间后自动关闭)。

有的童鞋会发现Proxy模式和Decorator模式有些类似。确实,这两者看起来很像,但区别在于:Decorator模式让调用者自己创建核心类,然后组合各种功能,而Proxy模式决不能让调用者自己创建再组合,否则就失去了代理的功能。Proxy模式让调用者认为获取到的是核心类接口,但实际上是代理类。

练习

使用代理模式编写一个JDBC连接池。

下载练习

小结

代理模式通过封装一个已有接口,并向调用方返回相同的接口类型,能让调用方在不改变任何代码的前提下增强某些功能(例如,鉴权、延迟加载、连接池复用等)。

使用Proxy模式要求调用方持有接口,作为Proxy的类也必须实现相同的接口类型。

留言與分享

创建型模式关注点是如何创建对象,其核心思想是要把对象的创建和使用相分离,这样使得两者能相对独立地变换。

创建型模式包括:

  • 工厂方法:Factory Method
  • 抽象工厂:Abstract Factory
  • 建造者:Builder
  • 原型:Prototype
  • 单例:Singleton

定义一个用于创建对象的接口,让子类决定实例化哪一个类。Factory Method使一个类的实例化延迟到其子类。

工厂方法即Factory Method,是一种对象创建型模式。

工厂方法的目的是使得创建对象和使用对象是分离的,并且客户端总是引用抽象工厂和抽象产品:

1
2
3
4
5
6
7
8
┌─────────────┐      ┌─────────────┐
│ Product │ │ Factory │
└─────────────┘ └─────────────┘
▲ ▲
│ │
┌─────────────┐ ┌─────────────┐
│ ProductImpl │◀─ ─ ─│ FactoryImpl │
└─────────────┘ └─────────────┘

我们以具体的例子来说:假设我们希望实现一个解析字符串到NumberFactory,可以定义如下:

1
2
3
public interface NumberFactory {
Number parse(String s);
}

有了工厂接口,再编写一个工厂的实现类:

1
2
3
4
5
public class NumberFactoryImpl implements NumberFactory {
public Number parse(String s) {
return new BigDecimal(s);
}
}

而产品接口是NumberNumberFactoryImpl返回的实际产品是BigDecimal

那么客户端如何创建NumberFactoryImpl呢?通常我们会在接口Factory中定义一个静态方法getFactory()来返回真正的子类:

1
2
3
4
5
6
7
8
9
10
11
public interface NumberFactory {
// 创建方法:
Number parse(String s);

// 获取工厂实例:
static NumberFactory getFactory() {
return impl;
}

static NumberFactory impl = new NumberFactoryImpl();
}

在客户端中,我们只需要和工厂接口NumberFactory以及抽象产品Number打交道:

1
2
NumberFactory factory = NumberFactory.getFactory();
Number result = factory.parse("123.456");

调用方可以完全忽略真正的工厂NumberFactoryImpl和实际的产品BigDecimal,这样做的好处是允许创建产品的代码独立地变换,而不会影响到调用方。

有的童鞋会问:一个简单的parse()需要写这么复杂的工厂吗?实际上大多数情况下我们并不需要抽象工厂,而是通过静态方法直接返回产品,即:

1
2
3
4
5
public class NumberFactory {
public static Number parse(String s) {
return new BigDecimal(s);
}
}

这种简化的使用静态方法创建产品的方式称为静态工厂方法(Static Factory Method)。静态工厂方法广泛地应用在Java标准库中。例如:

1
Integer n = Integer.valueOf(100);

Integer既是产品又是静态工厂。它提供了静态方法valueOf()来创建Integer。那么这种方式和直接写new Integer(100)有何区别呢?我们观察valueOf()方法:

1
2
3
4
5
6
7
8
public final class Integer {
public static Integer valueOf(int i) {
if (i >= IntegerCache.low && i <= IntegerCache.high)
return IntegerCache.cache[i + (-IntegerCache.low)];
return new Integer(i);
}
...
}

它的好处在于,valueOf()内部可能会使用new创建一个新的Integer实例,但也可能直接返回一个缓存的Integer实例。对于调用方来说,没必要知道Integer创建的细节。

提示

工厂方法可以隐藏创建产品的细节,且不一定每次都会真正创建产品,完全可以返回缓存的产品,从而提升速度并减少内存消耗。

如果调用方直接使用Integer n = new Integer(100),那么就失去了使用缓存优化的可能性。

我们经常使用的另一个静态工厂方法是List.of()

1
List<String> list = List.of("A", "B", "C");

这个静态工厂方法接收可变参数,然后返回List接口。需要注意的是,调用方获取的产品总是List接口,而且并不关心它的实际类型。即使调用方知道List产品的实际类型是java.util.ImmutableCollections$ListN,也不要去强制转型为子类,因为静态工厂方法List.of()保证返回List,但也完全可以修改为返回java.util.ArrayList。这就是里氏替换原则:返回实现接口的任意子类都可以满足该方法的要求,且不影响调用方。

提示

总是引用接口而非实现类,能允许变换子类而不影响调用方,即尽可能面向抽象编程。

List.of()类似,我们使用MessageDigest时,为了创建某个摘要算法,总是使用静态工厂方法getInstance(String)

1
2
MessageDigest md5 = MessageDigest.getInstance("MD5");
MessageDigest sha1 = MessageDigest.getInstance("SHA-1");

调用方通过产品名称获得产品实例,不但调用简单,而且获得的引用仍然是MessageDigest这个抽象类。

练习

使用静态工厂方法实现一个类似20200202的整数转换为LocalDate

1
2
3
4
5
public class LocalDateFactory {
public static LocalDate fromInt(int yyyyMMdd) {
...
}
}

下载练习

小结

工厂方法是指定义工厂接口和产品接口,但如何创建实际工厂和实际产品被推迟到子类实现,从而使调用方只和抽象工厂与抽象产品打交道。

实际更常用的是更简单的静态工厂方法,它允许工厂内部对创建产品进行优化。

调用方尽量持有接口或抽象类,避免持有具体类型的子类,以便工厂方法能随时切换不同的子类返回,却不影响调用方代码。

提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。

抽象工厂模式(Abstract Factory)是一个比较复杂的创建型模式。

抽象工厂模式和工厂方法不太一样,它要解决的问题比较复杂,不但工厂是抽象的,产品是抽象的,而且有多个产品需要创建,因此,这个抽象工厂会对应到多个实际工厂,每个实际工厂负责创建多个实际产品:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
                                ┌────────┐
─ ▶│ProductA│
┌────────┐ ┌─────────┐ │ └────────┘
│ Client │─ ─▶│ Factory │─ ─
└────────┘ └─────────┘ │ ┌────────┐
▲ ─ ▶│ProductB│
┌───────┴───────┐ └────────┘
│ │
┌─────────┐ ┌─────────┐
│Factory1 │ │Factory2 │
└─────────┘ └─────────┘
│ ┌─────────┐ │ ┌─────────┐
─ ▶│ProductA1│ ─ ▶│ProductA2│
│ └─────────┘ │ └─────────┘
┌─────────┐ ┌─────────┐
└ ─▶│ProductB1│ └ ─▶│ProductB2│
└─────────┘ └─────────┘

这种模式有点类似于多个供应商负责提供一系列类型的产品。我们举个例子:

假设我们希望为用户提供一个Markdown文本转换为HTML和Word的服务,它的接口定义如下:

1
2
3
4
5
6
public interface AbstractFactory {
// 创建Html文档:
HtmlDocument createHtml(String md);
// 创建Word文档:
WordDocument createWord(String md);
}

注意到上面的抽象工厂仅仅是一个接口,没有任何代码。同样的,因为HtmlDocumentWordDocument都比较复杂,现在我们并不知道如何实现它们,所以只有接口:

1
2
3
4
5
6
7
8
9
10
// Html文档接口:
public interface HtmlDocument {
String toHtml();
void save(Path path) throws IOException;
}

// Word文档接口:
public interface WordDocument {
void save(Path path) throws IOException;
}

这样,我们就定义好了抽象工厂(AbstractFactory)以及两个抽象产品(HtmlDocumentWordDocument)。因为实现它们比较困难,我们决定让供应商来完成。

现在市场上有两家供应商:FastDoc Soft的产品便宜,并且转换速度快,而GoodDoc Soft的产品贵,但转换效果好。我们决定同时使用这两家供应商的产品,以便给免费用户和付费用户提供不同的服务。

我们先看看FastDoc Soft的产品是如何实现的。首先,FastDoc Soft必须要有实际的产品,即FastHtmlDocumentFastWordDocument

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class FastHtmlDocument implements HtmlDocument {
public String toHtml() {
...
}
public void save(Path path) throws IOException {
...
}
}

public class FastWordDocument implements WordDocument {
public void save(Path path) throws IOException {
...
}
}

然后,FastDoc Soft必须提供一个实际的工厂来生产这两种产品,即FastFactory

1
2
3
4
5
6
7
8
public class FastFactory implements AbstractFactory {
public HtmlDocument createHtml(String md) {
return new FastHtmlDocument(md);
}
public WordDocument createWord(String md) {
return new FastWordDocument(md);
}
}

这样,我们就可以使用FastDoc Soft的服务了。客户端编写代码如下:

1
2
3
4
5
6
7
8
// 创建AbstractFactory,实际类型是FastFactory:
AbstractFactory factory = new FastFactory();
// 生成Html文档:
HtmlDocument html = factory.createHtml("#Hello\nHello, world!");
html.save(Paths.get(".", "fast.html"));
// 生成Word文档:
WordDocument word = factory.createWord("#Hello\nHello, world!");
word.save(Paths.get(".", "fast.doc"));

如果我们要同时使用GoodDoc Soft的服务怎么办?因为用了抽象工厂模式,GoodDoc Soft只需要根据我们定义的抽象工厂和抽象产品接口,实现自己的实际工厂和实际产品即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// 实际工厂:
public class GoodFactory implements AbstractFactory {
public HtmlDocument createHtml(String md) {
return new GoodHtmlDocument(md);
}
public WordDocument createWord(String md) {
return new GoodWordDocument(md);
}
}

// 实际产品:
public class GoodHtmlDocument implements HtmlDocument {
...
}

public class GoodWordDocument implements HtmlDocument {
...
}

客户端要使用GoodDoc Soft的服务,只需要把原来的new FastFactory()切换为new GoodFactory()即可。

注意到客户端代码除了通过new创建了FastFactoryGoodFactory外,其余代码只引用了产品接口,并未引用任何实际产品(例如,FastHtmlDocument),如果把创建工厂的代码放到AbstractFactory中,就可以连实际工厂也屏蔽了:

1
2
3
4
5
6
7
8
9
10
11
public interface AbstractFactory {
public static AbstractFactory createFactory(String name) {
if (name.equalsIgnoreCase("fast")) {
return new FastFactory();
} else if (name.equalsIgnoreCase("good")) {
return new GoodFactory();
} else {
throw new IllegalArgumentException("Invalid factory name");
}
}
}

我们来看看FastFactoryGoodFactory创建的WordDocument的实际效果:

abstract-factory

注意:出于简化代码的目的,我们只支持两种Markdown语法:以#开头的标题以及普通正文。

练习

使用Abstract Factory模式实现HtmlDocumentWordDocument

下载练习

小结

抽象工厂模式是为了让创建工厂和一组产品与使用相分离,并可以随时切换到另一个工厂以及另一组产品;

抽象工厂模式实现的关键点是定义工厂接口和产品接口,但如何实现工厂与产品本身需要留给具体的子类实现,客户端只和抽象工厂与抽象产品打交道。

将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。

生成器模式(Builder)是使用多个“小型”工厂来最终创建出一个完整对象。

当我们使用Builder的时候,一般来说,是因为创建这个对象的步骤比较多,每个步骤都需要一个零部件,最终组合成一个完整的对象。

我们仍然以Markdown转HTML为例,因为直接编写一个完整的转换器比较困难,但如果针对类似下面的一行文本:

1
# this is a heading

转换成HTML就很简单:

1
<h1>this is a heading</h1>

因此,我们把Markdown转HTML看作一行一行的转换,每一行根据语法,使用不同的转换器:

  • 如果以#开头,使用HeadingBuilder转换;
  • 如果以>开头,使用QuoteBuilder转换;
  • 如果以---开头,使用HrBuilder转换;
  • 其余使用ParagraphBuilder转换。

这个HtmlBuilder写出来如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
public class HtmlBuilder {
private HeadingBuilder headingBuilder = new HeadingBuilder();
private HrBuilder hrBuilder = new HrBuilder();
private ParagraphBuilder paragraphBuilder = new ParagraphBuilder();
private QuoteBuilder quoteBuilder = new QuoteBuilder();

public String toHtml(String markdown) {
StringBuilder buffer = new StringBuilder();
markdown.lines().forEach(line -> {
if (line.startsWith("#")) {
buffer.append(headingBuilder.buildHeading(line)).append('\n');
} else if (line.startsWith(">")) {
buffer.append(quoteBuilder.buildQuote(line)).append('\n');
} else if (line.startsWith("---")) {
buffer.append(hrBuilder.buildHr(line)).append('\n');
} else {
buffer.append(paragraphBuilder.buildParagraph(line)).append('\n');
}
});
return buffer.toString();
}
}

注意观察上述代码,HtmlBuilder并不是一次性把整个Markdown转换为HTML,而是一行一行转换,并且,它自己并不会将某一行转换为特定的HTML,而是根据特性把每一行都“委托”给一个XxxBuilder去转换,最后,把所有转换的结果组合起来,返回给客户端。

这样一来,我们只需要针对每一种类型编写不同的Builder。例如,针对以#开头的行,需要HeadingBuilder

1
2
3
4
5
6
7
8
9
10
public class HeadingBuilder {
public String buildHeading(String line) {
int n = 0;
while (line.charAt(0) == '#') {
n++;
line = line.substring(1);
}
return String.format("<h%d>%s</h%d>", n, line.strip(), n);
}
}

注意

实际解析Markdown是带有状态的,即下一行的语义可能与上一行相关。这里我们简化了语法,把每一行视为可以独立转换。

可见,使用Builder模式时,适用于创建的对象比较复杂,最好一步一步创建出“零件”,最后再装配起来。

JavaMail的MimeMessage就可以看作是一个Builder模式,只不过Builder和最终产品合二为一,都是MimeMessage

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Multipart multipart = new MimeMultipart();
// 添加text:
BodyPart textpart = new MimeBodyPart();
textpart.setContent(body, "text/html;charset=utf-8");
multipart.addBodyPart(textpart);
// 添加image:
BodyPart imagepart = new MimeBodyPart();
imagepart.setFileName(fileName);
imagepart.setDataHandler(new DataHandler(new ByteArrayDataSource(input, "application/octet-stream")));
multipart.addBodyPart(imagepart);

MimeMessage message = new MimeMessage(session);
// 设置发送方地址:
message.setFrom(new InternetAddress("me@example.com"));
// 设置接收方地址:
message.setRecipient(Message.RecipientType.TO, new InternetAddress("xiaoming@somewhere.com"));
// 设置邮件主题:
message.setSubject("Hello", "UTF-8");
// 设置邮件内容为multipart:
message.setContent(multipart);

很多时候,我们可以简化Builder模式,以链式调用的方式来创建对象。例如,我们经常编写这样的代码:

1
2
3
4
5
6
StringBuilder builder = new StringBuilder();
builder.append(secure ? "https://" : "http://")
.append("www.liaoxuefeng.com")
.append("/")
.append("?t=0");
String url = builder.toString();

由于我们经常需要构造URL字符串,可以使用Builder模式编写一个URLBuilder,调用方式如下:

1
2
3
4
5
6
String url = URLBuilder.builder() // 创建Builder
.setDomain("www.liaoxuefeng.com") // 设置domain
.setScheme("https") // 设置scheme
.setPath("/") // 设置路径
.setQuery(Map.of("a", "123", "q", "K&R")) // 设置query
.build(); // 完成build

练习

使用Builder模式实现一个URLBuilder。

下载练习

小结

Builder模式是为了创建一个复杂的对象,需要多个步骤完成创建,或者需要多个零件组装的场景,且创建过程中可以灵活调用不同的步骤或组件。

原型

用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象。

原型模式,即Prototype,是指创建新对象的时候,根据现有的一个原型来创建。

我们举个例子:如果我们已经有了一个String[]数组,想再创建一个一模一样的String[]数组,怎么写?

实际上创建过程很简单,就是把现有数组的元素复制到新数组。如果我们把这个创建过程封装一下,就成了原型模式。用代码实现如下:

1
2
3
4
// 原型:
String[] original = { "Apple", "Pear", "Banana" };
// 新对象:
String[] copy = Arrays.copyOf(original, original.length);

对于普通类,我们如何实现原型拷贝?Java的Object提供了一个clone()方法,它的意图就是复制一个新的对象出来,我们需要实现一个Cloneable接口来标识一个对象是“可复制”的:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class Student implements Cloneable {
private int id;
private String name;
private int score;

// 复制新对象并返回:
public Object clone() {
Student std = new Student();
std.id = this.id;
std.name = this.name;
std.score = this.score;
return std;
}
}

使用的时候,因为clone()的方法签名是定义在Object中,返回类型也是Object,所以要强制转型,比较麻烦:

1
2
3
4
5
6
7
8
9
Student std1 = new Student();
std1.setId(123);
std1.setName("Bob");
std1.setScore(88);
// 复制新对象:
Student std2 = (Student) std1.clone();
System.out.println(std1);
System.out.println(std2);
System.out.println(std1 == std2); // false

实际上,使用原型模式更好的方式是定义一个copy()方法,返回明确的类型:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Student {
private int id;
private String name;
private int score;

public Student copy() {
Student std = new Student();
std.id = this.id;
std.name = this.name;
std.score = this.score;
return std;
}
}

原型模式应用不是很广泛,因为很多实例会持有类似文件、Socket这样的资源,而这些资源是无法复制给另一个对象共享的,只有存储简单类型的“值”对象可以复制。

练习

Student类增加clone()方法。

下载练习

小结

原型模式是根据一个现有对象实例复制出一个新的实例,复制出的类型和属性与原实例相同。



保证一个类仅有一个实例,并提供一个访问它的全局访问点。

单例模式(Singleton)的目的是为了保证在一个进程中,某个类有且仅有一个实例。

因为这个类只有一个实例,因此,自然不能让调用方使用new Xyz()来创建实例了。所以,单例的构造方法必须是private,这样就防止了调用方自己创建实例,但是在类的内部,是可以用一个静态字段来引用唯一创建的实例的:

1
2
3
4
5
6
7
8
public class Singleton {
// 静态字段引用唯一实例:
private static final Singleton INSTANCE = new Singleton();

// private构造方法保证外部无法实例化:
private Singleton() {
}
}

那么问题来了,外部调用方如何获得这个唯一实例?

答案是提供一个静态方法,直接返回实例:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Singleton {
// 静态字段引用唯一实例:
private static final Singleton INSTANCE = new Singleton();

// 通过静态方法返回实例:
public static Singleton getInstance() {
return INSTANCE;
}

// private构造方法保证外部无法实例化:
private Singleton() {
}
}

或者直接把static变量暴露给外部:

1
2
3
4
5
6
7
8
public class Singleton {
// 静态字段引用唯一实例:
public static final Singleton INSTANCE = new Singleton();

// private构造方法保证外部无法实例化:
private Singleton() {
}
}

所以,单例模式的实现方式很简单:

  1. 只有private构造方法,确保外部无法实例化;
  2. 通过private static变量持有唯一实例,保证全局唯一性;
  3. 通过public static方法返回此唯一实例,使外部调用方能获取到实例。

Java标准库有一些类就是单例,例如Runtime这个类:

1
Runtime runtime = Runtime.getRuntime();

有些童鞋可能听说过延迟加载,即在调用方第一次调用getInstance()时才初始化全局唯一实例,类似这样:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Singleton {
private static Singleton INSTANCE = null;

public static Singleton getInstance() {
if (INSTANCE == null) {
INSTANCE = new Singleton();
}
return INSTANCE;
}

private Singleton() {
}
}

遗憾的是,这种写法在多线程中是错误的,在竞争条件下会创建出多个实例。必须对整个方法进行加锁:

1
2
3
4
5
6
public synchronized static Singleton getInstance() {
if (INSTANCE == null) {
INSTANCE = new Singleton();
}
return INSTANCE;
}

但加锁会严重影响并发性能。还有些童鞋听说过双重检查,类似这样:

1
2
3
4
5
6
7
8
9
10
public static Singleton getInstance() {
if (INSTANCE == null) {
synchronized (Singleton.class) {
if (INSTANCE == null) {
INSTANCE = new Singleton();
}
}
}
return INSTANCE;
}

然而,由于Java的内存模型,双重检查在这里不成立。要真正实现延迟加载,只能通过Java的ClassLoader机制完成。如果没有特殊的需求,使用Singleton模式的时候,最好不要延迟加载,这样会使代码更简单。

另一种实现Singleton的方式是利用Java的enum,因为Java保证枚举类的每个枚举都是单例,所以我们只需要编写一个只有一个枚举的类即可:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public enum World {
// 唯一枚举:
INSTANCE;

private String name = "world";

public String getName() {
return this.name;
}

public void setName(String name) {
this.name = name;
}
}

枚举类也完全可以像其他类那样定义自己的字段、方法,这样上面这个World类在调用方看来就可以这么用:

1
String name = World.INSTANCE.getName();

使用枚举实现Singleton还避免了第一种方式实现Singleton的一个潜在问题:即序列化和反序列化会绕过普通类的private构造方法从而创建出多个实例,而枚举类就没有这个问题。

那我们什么时候应该用Singleton呢?实际上,很多程序,尤其是Web程序,大部分服务类都应该被视作Singleton,如果全部按Singleton的写法写,会非常麻烦,所以,通常是通过约定让框架(例如Spring)来实例化这些类,保证只有一个实例,调用方自觉通过框架获取实例而不是new操作符:

1
2
3
4
@Component // 表示一个单例组件
public class MyService {
...
}

因此,除非确有必要,否则Singleton模式一般以“约定”为主,不会刻意实现它。

练习

使用两种Singleton模式实现单例。

下载练习

小结

Singleton模式是为了保证一个程序的运行期间,某个类有且只有一个全局唯一实例;

Singleton模式既可以严格实现,也可以以约定的方式把普通类视作单例。

留言與分享

JAVA-设计模式

分類 编程语言, Java

设计模式

设计模式,即Design Patterns,是指在软件设计中,被反复使用的一种代码设计经验。使用设计模式的目的是为了可重用代码,提高代码的可扩展性和可维护性。

设计模式这个术语是上个世纪90年代由Erich Gamma、Richard Helm、Raplh Johnson和Jonhn Vlissides四个人总结提炼出来的,并且写了一本Design Patterns的书。这四人也被称为四人帮(GoF)。

为什么要使用设计模式?根本原因还是软件开发要实现可维护、可扩展,就必须尽量复用代码,并且降低代码的耦合度。设计模式主要是基于OOP编程提炼的,它基于以下几个原则:

开闭原则

由Bertrand Meyer提出的开闭原则(Open Closed Principle)是指,软件应该对扩展开放,而对修改关闭。这里的意思是在增加新功能的时候,能不改代码就尽量不要改,如果只增加代码就完成了新功能,那是最好的。

里氏替换原则

里氏替换原则是Barbara Liskov提出的,这是一种面向对象的设计原则,即如果我们调用一个父类的方法可以成功,那么替换成子类调用也应该完全可以运行。

设计模式把一些常用的设计思想提炼出一个个模式,然后给每个模式命名,这样在使用的时候更方便交流。GoF把23个常用模式分为创建型模式、结构型模式和行为型模式三类,我们后续会一一讲解。

学习设计模式,关键是学习设计思想,不能简单地生搬硬套,也不能为了使用设计模式而过度设计,要合理平衡设计的复杂度和灵活性,并意识到设计模式也并不是万能的。

留言與分享

JAVA-函数式编程

分類 编程语言, Java

函数式编程

本章我们介绍Java的函数式编程。

我们先看看什么是函数。函数是一种最基本的任务,一个大型程序就是一个顶层函数调用若干底层函数,这些被调用的函数又可以调用其他函数,即大任务被一层层拆解并执行。所以函数就是面向过程的程序设计的基本单元。

Java不支持单独定义函数,但可以把静态方法视为独立的函数,把实例方法视为自带this参数的函数。

而函数式编程(请注意多了一个“式”字)——Functional Programming,虽然也可以归结到面向过程的程序设计,但其思想更接近数学计算。

我们首先要搞明白计算机(Computer)和计算(Compute)的概念。

在计算机的层次上,CPU执行的是加减乘除的指令代码,以及各种条件判断和跳转指令,所以,汇编语言是最贴近计算机的语言。

而计算则指数学意义上的计算,越是抽象的计算,离计算机硬件越远。

对应到编程语言,就是越低级的语言,越贴近计算机,抽象程度低,执行效率高,比如C语言;越高级的语言,越贴近计算,抽象程度高,执行效率低,比如Lisp语言。

函数式编程就是一种抽象程度很高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要输入是确定的,输出就是确定的,这种纯函数我们称之为没有副作用。而允许使用变量的程序设计语言,由于函数内部的变量状态不确定,同样的输入,可能得到不同的输出,因此,这种函数是有副作用的。

函数式编程的一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数!

函数式编程最早是数学家阿隆佐·邱奇研究的一套函数变换逻辑,又称Lambda Calculus(λ-Calculus),所以也经常把函数式编程称为Lambda计算。

Java平台从Java 8开始,支持函数式编程。

lambda



在了解Lambda之前,我们先回顾一下Java的方法。

Java的方法分为实例方法,例如Integer定义的equals()方法:

1
2
3
4
5
public final class Integer {
boolean equals(Object o) {
...
}
}

以及静态方法,例如Integer定义的parseInt()方法:

1
2
3
4
5
public final class Integer {
public static int parseInt(String s) {
...
}
}

无论是实例方法,还是静态方法,本质上都相当于过程式语言的函数。例如C函数:

1
char* strcpy(char* dest, char* src)

只不过Java的实例方法隐含地传入了一个this变量,即实例方法总是有一个隐含参数this

函数式编程(Functional Programming)是把函数作为基本运算单元,函数可以作为变量,可以接收函数,还可以返回函数。历史上研究函数式编程的理论是Lambda演算,所以我们经常把支持函数式编程的编码风格称为Lambda表达式。

Lambda表达式

在Java程序中,我们经常遇到一大堆单方法接口,即一个接口只定义了一个方法:

  • Comparator
  • Runnable
  • Callable

Comparator为例,我们想要调用Arrays.sort()时,可以传入一个Comparator实例,以匿名类方式编写如下:

1
2
3
4
5
6
String[] array = ...
Arrays.sort(array, new Comparator<String>() {
public int compare(String s1, String s2) {
return s1.compareTo(s2);
}
});

上述写法非常繁琐。从Java 8开始,我们可以用Lambda表达式替换单方法接口。改写上述代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
// Lambda
import java.util.Arrays;

public class Main {
public static void main(String[] args) {
String[] array = new String[] { "Apple", "Orange", "Banana", "Lemon" };
Arrays.sort(array, (s1, s2) -> {
return s1.compareTo(s2);
});
System.out.println(String.join(", ", array));
}
}

观察Lambda表达式的写法,它只需要写出方法定义:

1
2
3
(s1, s2) -> {
return s1.compareTo(s2);
}

其中,参数是(s1, s2),参数类型可以省略,因为编译器可以自动推断出String类型。-> { ... }表示方法体,所有代码写在内部即可。Lambda表达式没有class定义,因此写法非常简洁。

如果只有一行return xxx的代码,完全可以用更简单的写法:

1
Arrays.sort(array, (s1, s2) -> s1.compareTo(s2));

返回值的类型也是由编译器自动推断的,这里推断出的返回值是int,因此,只要返回int,编译器就不会报错。

FunctionalInterface

我们把只定义了单方法的接口称之为FunctionalInterface,用注解@FunctionalInterface标记。例如,Callable接口:

1
2
3
4
@FunctionalInterface
public interface Callable<V> {
V call() throws Exception;
}

再来看Comparator接口:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
@FunctionalInterface
public interface Comparator<T> {

int compare(T o1, T o2);

boolean equals(Object obj);

default Comparator<T> reversed() {
return Collections.reverseOrder(this);
}

default Comparator<T> thenComparing(Comparator<? super T> other) {
...
}
...
}

虽然Comparator接口有很多方法,但只有一个抽象方法int compare(T o1, T o2),其他的方法都是default方法或static方法。另外注意到boolean equals(Object obj)Object定义的方法,不算在接口方法内。因此,Comparator也是一个FunctionalInterface

练习

使用Lambda表达式实现忽略大小写排序。

下载练习

小结

单方法接口被称为FunctionalInterface

接收FunctionalInterface作为参数的时候,可以把实例化的匿名类改写为Lambda表达式,能大大简化代码。

Lambda表达式的参数和返回值均可由编译器自动推断。

使用Lambda表达式,我们就可以不必编写FunctionalInterface接口的实现类,从而简化代码:

1
2
3
Arrays.sort(array, (s1, s2) -> {
return s1.compareTo(s2);
});

实际上,除了Lambda表达式,我们还可以直接传入方法引用。例如:

1
2
3
4
5
6
7
8
9
10
11
12
13
import java.util.Arrays;

public class Main {
public static void main(String[] args) {
String[] array = new String[] { "Apple", "Orange", "Banana", "Lemon" };
Arrays.sort(array, Main::cmp);
System.out.println(String.join(", ", array));
}

static int cmp(String s1, String s2) {
return s1.compareTo(s2);
}
}

上述代码在Arrays.sort()中直接传入了静态方法cmp的引用,用Main::cmp表示。

因此,所谓方法引用,是指如果某个方法签名和接口恰好一致,就可以直接传入方法引用。

因为Comparator<String>接口定义的方法是int compare(String, String),和静态方法int cmp(String, String)相比,除了方法名外,方法参数一致,返回类型相同,因此,我们说两者的方法签名一致,可以直接把方法名作为Lambda表达式传入:

1
Arrays.sort(array, Main::cmp);

注意:在这里,方法签名只看参数类型和返回类型,不看方法名称,也不看类的继承关系。

我们再看看如何引用实例方法。如果我们把代码改写如下:

1
2
3
4
5
6
7
8
9
import java.util.Arrays;

public class Main {
public static void main(String[] args) {
String[] array = new String[] { "Apple", "Orange", "Banana", "Lemon" };
Arrays.sort(array, String::compareTo);
System.out.println(String.join(", ", array));
}
}

不但可以编译通过,而且运行结果也是一样的,这说明String.compareTo()方法也符合Lambda定义。

观察String.compareTo()的方法定义:

1
2
3
4
5
public final class String {
public int compareTo(String o) {
...
}
}

这个方法的签名只有一个参数,为什么和int Comparator<String>.compare(String, String)能匹配呢?

因为实例方法有一个隐含的this参数,String类的compareTo()方法在实际调用的时候,第一个隐含参数总是传入this,相当于静态方法:

1
public static int compareTo(String this, String o);

所以,String.compareTo()方法也可作为方法引用传入。

构造方法引用

除了可以引用静态方法和实例方法,我们还可以引用构造方法。

我们来看一个例子:如果要把一个List<String>转换为List<Person>,应该怎么办?

1
2
3
4
5
6
7
8
9
class Person {
String name;
public Person(String name) {
this.name = name;
}
}

List<String> names = List.of("Bob", "Alice", "Tim");
List<Person> persons = ???

传统的做法是先定义一个ArrayList<Person>,然后用for循环填充这个List

1
2
3
4
5
List<String> names = List.of("Bob", "Alice", "Tim");
List<Person> persons = new ArrayList<>();
for (String name : names) {
persons.add(new Person(name));
}

要更简单地实现StringPerson的转换,我们可以引用Person的构造方法:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
// 引用构造方法
import java.util.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
List<String> names = List.of("Bob", "Alice", "Tim");
List<Person> persons = names.stream().map(Person::new).collect(Collectors.toList());
System.out.println(persons);
}
}

class Person {
String name;
public Person(String name) {
this.name = name;
}
public String toString() {
return "Person:" + this.name;
}
}

后面我们会讲到Streammap()方法。现在我们看到,这里的map()需要传入的FunctionalInterface的定义是:

1
2
3
4
@FunctionalInterface
public interface Function<T, R> {
R apply(T t);
}

把泛型对应上就是方法签名Person apply(String),即传入参数String,返回类型Person。而Person类的构造方法恰好满足这个条件,因为构造方法的参数是String,而构造方法虽然没有return语句,但它会隐式地返回this实例,类型就是Person,因此,此处可以引用构造方法。构造方法的引用写法是类名::new,因此,此处传入Person::new

练习

使用方法引用实现忽略大小写排序。

下载练习

小结

FunctionalInterface允许传入:

  • 接口的实现类(传统写法,代码较繁琐);
  • Lambda表达式(只需列出参数名,由编译器推断类型);
  • 符合方法签名的静态方法;
  • 符合方法签名的实例方法(实例类型被看做第一个参数类型);
  • 符合方法签名的构造方法(实例类型被看做返回类型)。

FunctionalInterface不强制继承关系,不需要方法名称相同,只要求方法参数(类型和数量)与方法返回类型相同,即认为方法签名相同。

Java从8开始,不但引入了Lambda表达式,还引入了一个全新的流式API:Stream API。它位于java.util.stream包中。

划重点:这个Stream不同于java.ioInputStreamOutputStream,它代表的是任意Java对象的序列。两者对比如下:

java.io java.util.stream
存储 顺序读写的bytechar 顺序输出的任意Java对象实例
用途 序列化至文件或网络 内存计算/业务逻辑

有同学会问:一个顺序输出的Java对象序列,不就是一个List容器吗?

再次划重点:这个StreamList也不一样,List存储的每个元素都是已经存储在内存中的某个Java对象,而Stream输出的元素可能并没有预先存储在内存中,而是实时计算出来的。

换句话说,List的用途是操作一组已存在的Java对象,而Stream实现的是惰性计算,两者对比如下:

java.util.List java.util.stream
元素 已分配并存储在内存 可能未分配,实时计算
用途 操作一组已存在的Java对象 惰性计算

Stream看上去有点不好理解,但我们举个例子就明白了。

如果我们要表示一个全体自然数的集合,显然,用List是不可能写出来的,因为自然数是无限的,内存再大也没法放到List中:

1
List<BigInteger> list = ??? // 全体自然数?

但是,用Stream可以做到。写法如下:

1
Stream<BigInteger> naturals = createNaturalStream(); // 全体自然数

我们先不考虑createNaturalStream()这个方法是如何实现的,我们看看如何使用这个Stream

首先,我们可以对每个自然数做一个平方,这样我们就把这个Stream转换成了另一个Stream

1
2
Stream<BigInteger> naturals = createNaturalStream(); // 全体自然数
Stream<BigInteger> streamNxN = naturals.map(n -> n.multiply(n)); // 全体自然数的平方

因为这个streamNxN也有无限多个元素,要打印它,必须首先把无限多个元素变成有限个元素,可以用limit()方法截取前100个元素,最后用forEach()处理每个元素,这样,我们就打印出了前100个自然数的平方:

1
2
3
4
Stream<BigInteger> naturals = createNaturalStream();
naturals.map(n -> n.multiply(n)) // 1, 4, 9, 16, 25...
.limit(100)
.forEach(System.out::println);

我们总结一下Stream的特点:它可以“存储”有限个或无限个元素。这里的存储打了个引号,是因为元素有可能已经全部存储在内存中,也有可能是根据需要实时计算出来的。

Stream的另一个特点是,一个Stream可以轻易地转换为另一个Stream,而不是修改原Stream本身。

最后,真正的计算通常发生在最后结果的获取,也就是惰性计算。

1
2
3
4
Stream<BigInteger> naturals = createNaturalStream(); // 不计算
Stream<BigInteger> s2 = naturals.map(n -> n.multiply(n)); // 不计算
Stream<BigInteger> s3 = s2.limit(100); // 不计算
s3.forEach(System.out::println); // 计算

惰性计算的特点是:一个Stream转换为另一个Stream时,实际上只存储了转换规则,并没有任何计算发生。

例如,创建一个全体自然数的Stream,不会进行计算,把它转换为上述s2这个Stream,也不会进行计算。再把s2这个无限Stream转换为s3这个有限的Stream,也不会进行计算。只有最后,调用forEach确实需要Stream输出的元素时,才进行计算。我们通常把Stream的操作写成链式操作,代码更简洁:

1
2
3
4
createNaturalStream()
.map(n -> n.multiply(n))
.limit(100)
.forEach(System.out::println);

因此,Stream API的基本用法就是:创建一个Stream,然后做若干次转换,最后调用一个求值方法获取真正计算的结果:

1
2
3
4
5
int result = createNaturalStream() // 创建Stream
.filter(n -> n % 2 == 0) // 任意个转换
.map(n -> n * n) // 任意个转换
.limit(100) // 任意个转换
.sum(); // 最终计算结果

小结

Stream API的特点是:

  • Stream API提供了一套新的流式处理的抽象序列;
  • Stream API支持函数式编程和链式操作;
  • Stream可以表示无限序列,并且大多数情况下是惰性求值的。

要使用Stream,就必须先创建它。创建Stream有很多种方法,我们来一一介绍。

Stream.of()

创建Stream最简单的方式是直接用Stream.of()静态方法,传入可变参数即创建了一个能输出确定元素的Stream

1
2
3
4
5
6
7
8
9
10
import java.util.stream.Stream;

public class Main {
public static void main(String[] args) {
Stream<String> stream = Stream.of("A", "B", "C", "D");
// forEach()方法相当于内部循环调用,
// 可传入符合Consumer接口的void accept(T t)的方法引用:
stream.forEach(System.out::println);
}
}

虽然这种方式基本上没啥实质性用途,但测试的时候很方便。

基于数组或Collection

第二种创建Stream的方法是基于一个数组或者Collection,这样该Stream输出的元素就是数组或者Collection持有的元素:

1
2
3
4
5
6
7
8
9
10
11
import java.util.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
Stream<String> stream1 = Arrays.stream(new String[] { "A", "B", "C" });
Stream<String> stream2 = List.of("X", "Y", "Z").stream();
stream1.forEach(System.out::println);
stream2.forEach(System.out::println);
}
}

把数组变成Stream使用Arrays.stream()方法。对于CollectionListSetQueue等),直接调用stream()方法就可以获得Stream

上述创建Stream的方法都是把一个现有的序列变为Stream,它的元素是固定的。

基于Supplier

创建Stream还可以通过Stream.generate()方法,它需要传入一个Supplier对象:

1
Stream<String> s = Stream.generate(Supplier<String> sp);

基于Supplier创建的Stream会不断调用Supplier.get()方法来不断产生下一个元素,这种Stream保存的不是元素,而是算法,它可以用来表示无限序列。

例如,我们编写一个能不断生成自然数的Supplier,它的代码非常简单,每次调用get()方法,就生成下一个自然数:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import java.util.function.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
Stream<Integer> natual = Stream.generate(new NatualSupplier());
// 注意:无限序列必须先变成有限序列再打印:
natual.limit(20).forEach(System.out::println);
}
}

class NatualSupplier implements Supplier<Integer> {
int n = 0;
public Integer get() {
n++;
return n;
}
}

上述代码我们用一个Supplier<Integer>模拟了一个无限序列(当然受int范围限制不是真的无限大)。如果用List表示,即便在int范围内,也会占用巨大的内存,而Stream几乎不占用空间,因为每个元素都是实时计算出来的,用的时候再算。

对于无限序列,如果直接调用forEach()或者count()这些最终求值操作,会进入死循环,因为永远无法计算完这个序列,所以正确的方法是先把无限序列变成有限序列,例如,用limit()方法可以截取前面若干个元素,这样就变成了一个有限序列,对这个有限序列调用forEach()或者count()操作就没有问题。

其他方法

创建Stream的第三种方法是通过一些API提供的接口,直接获得Stream

例如,Files类的lines()方法可以把一个文件变成一个Stream,每个元素代表文件的一行内容:

1
2
3
try (Stream<String> lines = Files.lines(Paths.get("/path/to/file.txt"))) {
...
}

此方法对于按行遍历文本文件十分有用。

另外,正则表达式的Pattern对象有一个splitAsStream()方法,可以直接把一个长字符串分割成Stream序列而不是数组:

1
2
3
Pattern p = Pattern.compile("\\s+");
Stream<String> s = p.splitAsStream("The quick brown fox jumps over the lazy dog");
s.forEach(System.out::println);

基本类型

因为Java的泛型不支持基本类型,所以我们无法用Stream<int>这样的类型,会发生编译错误。为了保存int,只能使用Stream<Integer>,但这样会产生频繁的装箱、拆箱操作。为了提高效率,Java标准库提供了IntStreamLongStreamDoubleStream这三种使用基本类型的Stream,它们的使用方法和泛型Stream没有大的区别,设计这三个Stream的目的是提高运行效率:

1
2
3
4
// 将int[]数组变为IntStream:
IntStream is = Arrays.stream(new int[] { 1, 2, 3 });
// 将Stream<String>转换为LongStream:
LongStream ls = List.of("1", "2", "3").stream().mapToLong(Long::parseLong);

练习

编写一个能输出斐波拉契数列(Fibonacci)的LongStream

1
1, 1, 2, 3, 5, 8, 13, 21, 34, ...

下载练习

小结

创建Stream的方法有 :

  • 通过指定元素、指定数组、指定Collection创建Stream
  • 通过Supplier创建Stream,可以是无限序列;
  • 通过其他类的相关方法创建。

基本类型的StreamIntStreamLongStreamDoubleStream

使用map

Stream.map()Stream最常用的一个转换方法,它把一个Stream转换为另一个Stream

所谓map操作,就是把一种操作运算,映射到一个序列的每一个元素上。例如,对x计算它的平方,可以使用函数f(x) = x * x。我们把这个函数映射到一个序列1,2,3,4,5上,就得到了另一个序列1,4,9,16,25:

1
2
3
4
5
6
7
8
9
10
11
12
13
            f(x) = x * x


┌───┬───┬───┬───┼───┬───┬───┬───┐
│ │ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

[ 1 2 3 4 5 6 7 8 9 ]

│ │ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

[ 1 4 9 16 25 36 49 64 81 ]

可见,map操作,把一个Stream的每个元素一一对应到应用了目标函数的结果上。

1
2
Stream<Integer> s = Stream.of(1, 2, 3, 4, 5);
Stream<Integer> s2 = s.map(n -> n * n);

如果我们查看Stream的源码,会发现map()方法接收的对象是Function接口对象,它定义了一个apply()方法,负责把一个T类型转换成R类型:

1
<R> Stream<R> map(Function<? super T, ? extends R> mapper);

其中,Function的定义是:

1
2
3
4
5
@FunctionalInterface
public interface Function<T, R> {
// 将T类型转换为R:
R apply(T t);
}

利用map(),不但能完成数学计算,对于字符串操作,以及任何Java对象都是非常有用的。例如:

1
2
3
4
5
6
7
8
9
10
11
12
import java.util.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
List.of(" Apple ", " pear ", " ORANGE", " BaNaNa ")
.stream()
.map(String::trim) // 去空格
.map(String::toLowerCase) // 变小写
.forEach(System.out::println); // 打印
}
}

通过若干步map转换,可以写出逻辑简单、清晰的代码。

练习

使用map()把一组String转换为LocalDate并打印。

下载练习

小结

map()方法用于将一个Stream的每个元素映射成另一个元素并转换成一个新的Stream

可以将一种元素类型转换成另一种元素类型。



使用filter

Stream.filter()Stream的另一个常用转换方法。

所谓filter()操作,就是对一个Stream的所有元素一一进行测试,不满足条件的就被“滤掉”了,剩下的满足条件的元素就构成了一个新的Stream

例如,我们对1,2,3,4,5这个Stream调用filter(),传入的测试函数f(x) = x % 2 != 0用来判断元素是否是奇数,这样就过滤掉偶数,只剩下奇数,因此我们得到了另一个序列1,3,5:

1
2
3
4
5
6
7
8
9
10
11
12
13
            f(x) = x % 2 != 0


┌───┬───┬───┬───┼───┬───┬───┬───┐
│ │ │ │ │ │ │ │ │
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼

[ 1 2 3 4 5 6 7 8 9 ]

│ X │ X │ X │ X │
▼ ▼ ▼ ▼ ▼

[ 1 3 5 7 9 ]

用IntStream写出上述逻辑,代码如下:

1
2
3
4
5
6
7
8
9
import java.util.stream.IntStream;

public class Main {
public static void main(String[] args) {
IntStream.of(1, 2, 3, 4, 5, 6, 7, 8, 9)
.filter(n -> n % 2 != 0)
.forEach(System.out::println);
}
}

从结果可知,经过filter()后生成的Stream元素可能变少。

filter()方法接收的对象是Predicate接口对象,它定义了一个test()方法,负责判断元素是否符合条件:

1
2
3
4
5
@FunctionalInterface
public interface Predicate<T> {
// 判断元素t是否符合条件:
boolean test(T t);
}

filter()除了常用于数值外,也可应用于任何Java对象。例如,从一组给定的LocalDate中过滤掉工作日,以便得到休息日:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
import java.time.*;
import java.util.function.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
Stream.generate(new LocalDateSupplier())
.limit(31)
.filter(ldt -> ldt.getDayOfWeek() == DayOfWeek.SATURDAY || ldt.getDayOfWeek() == DayOfWeek.SUNDAY)
.forEach(System.out::println);
}
}

class LocalDateSupplier implements Supplier<LocalDate> {
LocalDate start = LocalDate.of(2020, 1, 1);
int n = -1;
public LocalDate get() {
n++;
return start.plusDays(n);
}
}

练习

请使用filter()过滤出成绩及格的同学,并打印出名字。

下载练习

小结

使用filter()方法可以对一个Stream的每个元素进行测试,通过测试的元素被过滤后生成一个新的Stream



map()filter()都是Stream的转换方法,而Stream.reduce()则是Stream的一个聚合方法,它可以把一个Stream的所有元素按照聚合函数聚合成一个结果。

我们来看一个简单的聚合方法:

1
2
3
4
5
6
7
8
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
int sum = Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9).reduce(0, (acc, n) -> acc + n);
System.out.println(sum); // 45
}
}

reduce()方法传入的对象是BinaryOperator接口,它定义了一个apply()方法,负责把上次累加的结果和本次的元素 进行运算,并返回累加的结果:

1
2
3
4
5
@FunctionalInterface
public interface BinaryOperator<T> {
// Bi操作:两个输入,一个输出
T apply(T t, T u);
}

上述代码看上去不好理解,但我们用for循环改写一下,就容易理解了:

1
2
3
4
5
Stream<Integer> stream = ...
int sum = 0;
for (n : stream) {
sum = (sum, n) -> sum + n;
}

可见,reduce()操作首先初始化结果为指定值(这里是0),紧接着,reduce()对每个元素依次调用(acc, n) -> acc + n,其中,acc是上次计算的结果:

1
2
3
4
5
6
7
8
9
10
11
// 计算过程:
acc = 0 // 初始化为指定值
acc = acc + n = 0 + 1 = 1 // n = 1
acc = acc + n = 1 + 2 = 3 // n = 2
acc = acc + n = 3 + 3 = 6 // n = 3
acc = acc + n = 6 + 4 = 10 // n = 4
acc = acc + n = 10 + 5 = 15 // n = 5
acc = acc + n = 15 + 6 = 21 // n = 6
acc = acc + n = 21 + 7 = 28 // n = 7
acc = acc + n = 28 + 8 = 36 // n = 8
acc = acc + n = 36 + 9 = 45 // n = 9

因此,实际上这个reduce()操作是一个求和。

如果去掉初始值,我们会得到一个Optional<Integer>

1
2
3
4
Optional<Integer> opt = stream.reduce((acc, n) -> acc + n);
if (opt.isPresent()) {
System.out.println(opt.get());
}

这是因为Stream的元素有可能是0个,这样就没法调用reduce()的聚合函数了,因此返回Optional对象,需要进一步判断结果是否存在。

利用reduce(),我们可以把求和改成求积,代码也十分简单:

1
2
3
4
5
6
7
8
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
int s = Stream.of(1, 2, 3, 4, 5, 6, 7, 8, 9).reduce(1, (acc, n) -> acc * n);
System.out.println(s); // 362880
}
}

注意:计算求积时,初始值必须设置为1

除了可以对数值进行累积计算外,灵活运用reduce()也可以对Java对象进行操作。下面的代码演示了如何将配置文件的每一行配置通过map()reduce()操作聚合成一个Map<String, String>

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import java.util.*;

public class Main {
public static void main(String[] args) {
// 按行读取配置文件:
List<String> props = List.of("profile=native", "debug=true", "logging=warn", "interval=500");
Map<String, String> map = props.stream()
// 把k=v转换为Map[k]=v:
.map(kv -> {
String[] ss = kv.split("\\=", 2);
return Map.of(ss[0], ss[1]);
})
// 把所有Map聚合到一个Map:
.reduce(new HashMap<String, String>(), (m, kv) -> {
m.putAll(kv);
return m;
});
// 打印结果:
map.forEach((k, v) -> {
System.out.println(k + " = " + v);
});
}
}

小结

reduce()方法将一个Stream的每个元素依次作用于BinaryOperator,并将结果合并。

reduce()是聚合方法,聚合方法会立刻对Stream进行计算。

我们介绍了Stream的几个常见操作:map()filter()reduce()。这些操作对Stream来说可以分为两类,一类是转换操作,即把一个Stream转换为另一个Stream,例如map()filter(),另一类是聚合操作,即对Stream的每个元素进行计算,得到一个确定的结果,例如reduce()

区分这两种操作是非常重要的,因为对于Stream来说,对其进行转换操作并不会触发任何计算!我们可以做个实验:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
import java.util.function.Supplier; 
import java.util.stream.Stream;

public class Main {
public static void main(String[] args) {
Stream<Long> s1 = Stream.generate(new NatualSupplier());
Stream<Long> s2 = s1.map(n -> n * n);
Stream<Long> s3 = s2.map(n -> n - 1);
System.out.println(s3); // java.util.stream.ReferencePipeline$3@49476842
}
}

class NatualSupplier implements Supplier<Long> {
long n = 0;
public Long get() {
n++;
return n;
}
}

因为s1是一个Long类型的序列,它的元素高达922亿亿个,但执行上述代码,既不会有任何内存增长,也不会有任何计算,因为转换操作只是保存了转换规则,无论我们对一个Stream转换多少次,都不会有任何实际计算发生。

而聚合操作则不一样,聚合操作会立刻促使Stream输出它的每一个元素,并依次纳入计算,以获得最终结果。所以,对一个Stream进行聚合操作,会触发一系列连锁反应:

1
2
3
4
5
Stream<Long> s1 = Stream.generate(new NatualSupplier());
Stream<Long> s2 = s1.map(n -> n * n);
Stream<Long> s3 = s2.map(n -> n - 1);
Stream<Long> s4 = s3.limit(10);
s4.reduce(0, (acc, n) -> acc + n);

我们对s4进行reduce()聚合计算,会不断请求s4输出它的每一个元素。因为s4的上游是s3,它又会向s3请求元素,导致s3s2请求元素,s2s1请求元素,最终,s1Supplier实例中请求到真正的元素,并经过一系列转换,最终被reduce()聚合出结果。

可见,聚合操作是真正需要从Stream请求数据的,对一个Stream做聚合计算后,结果就不是一个Stream,而是一个其他的Java对象。

输出为List

reduce()只是一种聚合操作,如果我们希望把Stream的元素保存到集合,例如List,因为List的元素是确定的Java对象,因此,把Stream变为List不是一个转换操作,而是一个聚合操作,它会强制Stream输出每个元素。

下面的代码演示了如何将一组String先过滤掉空字符串,然后把非空字符串保存到List中:

1
2
3
4
5
6
7
8
9
10
import java.util.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
Stream<String> stream = Stream.of("Apple", "", null, "Pear", " ", "Orange");
List<String> list = stream.filter(s -> s != null && !s.isBlank()).collect(Collectors.toList());
System.out.println(list);
}
}

Stream的每个元素收集到List的方法是调用collect()并传入Collectors.toList()对象,它实际上是一个Collector实例,通过类似reduce()的操作,把每个元素添加到一个收集器中(实际上是ArrayList)。

类似的,collect(Collectors.toSet())可以把Stream的每个元素收集到Set中。

输出为数组

把Stream的元素输出为数组和输出为List类似,我们只需要调用toArray()方法,并传入数组的“构造方法”:

1
2
List<String> list = List.of("Apple", "Banana", "Orange");
String[] array = list.stream().toArray(String[]::new);

注意到传入的“构造方法”是String[]::new,它的签名实际上是IntFunction<String[]>定义的String[] apply(int),即传入int参数,获得String[]数组的返回值。

输出为Map

如果我们要把Stream的元素收集到Map中,就稍微麻烦一点。因为对于每个元素,添加到Map时需要key和value,因此,我们要指定两个映射函数,分别把元素映射为key和value:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
import java.util.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
Stream<String> stream = Stream.of("APPL:Apple", "MSFT:Microsoft");
Map<String, String> map = stream
.collect(Collectors.toMap(
// 把元素s映射为key:
s -> s.substring(0, s.indexOf(':')),
// 把元素s映射为value:
s -> s.substring(s.indexOf(':') + 1)));
System.out.println(map);
}
}

分组输出

Stream还有一个强大的分组功能,可以按组输出。我们看下面的例子:

1
2
3
4
5
6
7
8
9
10
11
import java.util.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
List<String> list = List.of("Apple", "Banana", "Blackberry", "Coconut", "Avocado", "Cherry", "Apricots");
Map<String, List<String>> groups = list.stream()
.collect(Collectors.groupingBy(s -> s.substring(0, 1), Collectors.toList()));
System.out.println(groups);
}
}

分组输出使用Collectors.groupingBy(),它需要提供两个函数:一个是分组的key,这里使用s -> s.substring(0, 1),表示只要首字母相同的String分到一组,第二个是分组的value,这里直接使用Collectors.toList(),表示输出为List,上述代码运行结果如下:

1
2
3
4
5
{
A=[Apple, Avocado, Apricots],
B=[Banana, Blackberry],
C=[Coconut, Cherry]
}

可见,结果一共有3组,按"A""B""C"分组,每一组都是一个List

假设有这样一个Student类,包含学生姓名、班级和成绩:

1
2
3
4
5
6
class Student {
int gradeId; // 年级
int classId; // 班级
String name; // 名字
int score; // 分数
}

如果我们有一个Stream<Student>,利用分组输出,可以非常简单地按年级或班级把Student归类。

小结

Stream可以输出为集合:

Stream通过collect()方法可以方便地输出为ListSetMap,还可以分组输出。

我们把Stream提供的操作分为两类:转换操作和聚合操作。除了前面介绍的常用操作外,Stream还提供了一系列非常有用的方法。

排序

Stream的元素进行排序十分简单,只需调用sorted()方法:

1
2
3
4
5
6
7
8
9
10
11
12
import java.util.*;
import java.util.stream.*;

public class Main {
public static void main(String[] args) {
List<String> list = List.of("Orange", "apple", "Banana")
.stream()
.sorted()
.collect(Collectors.toList());
System.out.println(list);
}
}

此方法要求Stream的每个元素必须实现Comparable接口。如果要自定义排序,传入指定的Comparator即可:

1
2
3
4
List<String> list = List.of("Orange", "apple", "Banana")
.stream()
.sorted(String::compareToIgnoreCase)
.collect(Collectors.toList());

注意sorted()只是一个转换操作,它会返回一个新的Stream

去重

对一个Stream的元素进行去重,没必要先转换为Set,可以直接用distinct()

1
2
3
4
List.of("A", "B", "A", "C", "B", "D")
.stream()
.distinct()
.collect(Collectors.toList()); // [A, B, C, D]

截取

截取操作常用于把一个无限的Stream转换成有限的Streamskip()用于跳过当前Stream的前N个元素,limit()用于截取当前Stream最多前N个元素:

1
2
3
4
5
List.of("A", "B", "C", "D", "E", "F")
.stream()
.skip(2) // 跳过A, B
.limit(3) // 截取C, D, E
.collect(Collectors.toList()); // [C, D, E]

截取操作也是一个转换操作,将返回新的Stream

合并

将两个Stream合并为一个Stream可以使用Stream的静态方法concat()

1
2
3
4
5
Stream<String> s1 = List.of("A", "B", "C").stream();
Stream<String> s2 = List.of("D", "E").stream();
// 合并:
Stream<String> s = Stream.concat(s1, s2);
System.out.println(s.collect(Collectors.toList())); // [A, B, C, D, E]

flatMap

如果Stream的元素是集合:

1
2
3
4
Stream<List<Integer>> s = Stream.of(
Arrays.asList(1, 2, 3),
Arrays.asList(4, 5, 6),
Arrays.asList(7, 8, 9));

而我们希望把上述Stream转换为Stream<Integer>,就可以使用flatMap()

1
Stream<Integer> i = s.flatMap(list -> list.stream());

因此,所谓flatMap(),是指把Stream的每个元素(这里是List)映射为Stream,然后合并成一个新的Stream

1
2
3
4
5
6
7
8
9
10
11
12
13
┌─────────────┬─────────────┬─────────────┐
│┌───┬───┬───┐│┌───┬───┬───┐│┌───┬───┬───┐│
││ 1 │ 2 │ 3 │││ 4 │ 5 │ 6 │││ 7 │ 8 │ 9 ││
│└───┴───┴───┘│└───┴───┴───┘│└───┴───┴───┘│
└─────────────┴─────────────┴─────────────┘

│flatMap(List -> Stream)



┌───┬───┬───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 3 │ 4 │ 5 │ 6 │ 7 │ 8 │ 9 │
└───┴───┴───┴───┴───┴───┴───┴───┴───┘

并行

通常情况下,对Stream的元素进行处理是单线程的,即一个一个元素进行处理。但是很多时候,我们希望可以并行处理Stream的元素,因为在元素数量非常大的情况,并行处理可以大大加快处理速度。

把一个普通Stream转换为可以并行处理的Stream非常简单,只需要用parallel()进行转换:

1
2
3
4
Stream<String> s = ...
String[] result = s.parallel() // 变成一个可以并行处理的Stream
.sorted() // 可以进行并行排序
.toArray(String[]::new);

经过parallel()转换后的Stream只要可能,就会对后续操作进行并行处理。我们不需要编写任何多线程代码就可以享受到并行处理带来的执行效率的提升。

其他聚合方法

除了reduce()collect()外,Stream还有一些常用的聚合方法:

  • count():用于返回元素个数;
  • max(Comparator<? super T> cp):找出最大元素;
  • min(Comparator<? super T> cp):找出最小元素。

针对IntStreamLongStreamDoubleStream,还额外提供了以下聚合方法:

  • sum():对所有元素求和;
  • average():对所有元素求平均数。

还有一些方法,用来测试Stream的元素是否满足以下条件:

  • boolean allMatch(Predicate<? super T>):测试是否所有元素均满足测试条件;
  • boolean anyMatch(Predicate<? super T>):测试是否至少有一个元素满足测试条件。

最后一个常用的方法是forEach(),它可以循环处理Stream的每个元素,我们经常传入System.out::println来打印Stream的元素:

1
2
3
4
Stream<String> s = ...
s.forEach(str -> {
System.out.println("Hello, " + str);
});

小结

Stream提供的常用操作有:

转换操作:map()filter()sorted()distinct()

合并操作:concat()flatMap()

并行处理:parallel()

聚合操作:reduce()collect()count()max()min()sum()average()

其他操作:allMatch(), anyMatch(), forEach()

留言與分享

JAVA-JDBC编程

分類 编程语言, Java

在介绍JDBC之前,我们先简单介绍一下关系数据库。

程序运行的时候,数据都是在内存中的。当程序终止的时候,通常都需要将数据保存到磁盘上,无论是保存到本地磁盘,还是通过网络保存到服务器上,最终都会将数据写入磁盘文件。

而如何定义数据的存储格式就是一个大问题。如果我们自己来定义存储格式,比如保存一个班级所有学生的成绩单:

名字 成绩
Michael 99
Bob 85
Bart 59
Lisa 87

你可以用一个文本文件保存,一行保存一个学生,用,隔开:

1
2
3
4
Michael,99
Bob,85
Bart,59
Lisa,87

你还可以用JSON格式保存,也是文本文件:

1
2
3
4
5
6
[
{"name":"Michael","score":99},
{"name":"Bob","score":85},
{"name":"Bart","score":59},
{"name":"Lisa","score":87}
]

你还可以定义各种保存格式,但是问题来了:

存储和读取需要自己实现,JSON还是标准,自己定义的格式就各式各样了;

不能做快速查询,只有把数据全部读到内存中才能自己遍历,但有时候数据的大小远远超过了内存(比如蓝光电影,40GB的数据),根本无法全部读入内存。

为了便于程序保存和读取数据,而且,能直接通过条件快速查询到指定的数据,就出现了数据库(Database)这种专门用于集中存储和查询的软件。

数据库软件诞生的历史非常久远,早在1950年数据库就诞生了。经历了网状数据库,层次数据库,我们现在广泛使用的关系数据库是20世纪70年代基于关系模型的基础上诞生的。

关系模型有一套复杂的数学理论,但是从概念上是十分容易理解的。举个学校的例子:

假设某个XX省YY市ZZ县第一实验小学有3个年级,要表示出这3个年级,可以在Excel中用一个表格画出来:

grade

每个年级又有若干个班级,要把所有班级表示出来,可以在Excel中再画一个表格:

class

这两个表格有个映射关系,就是根据Grade_ID可以在班级表中查找到对应的所有班级:

grade-classes

也就是Grade表的每一行对应Class表的多行,在关系数据库中,这种基于表(Table)的一对多的关系就是关系数据库的基础。

根据某个年级的ID就可以查找所有班级的行,这种查询语句在关系数据库中称为SQL语句,可以写成:

1
SELECT * FROM classes WHERE grade_id = '1';

结果也是一个表:

grade_id class_id name
1 11 一年级一班
1 12 一年级二班
1 13 一年级三班

类似的,Class表的一行记录又可以关联到Student表的多行记录:

class-students

由于本教程不涉及到关系数据库的详细内容,如果你想从零学习关系数据库和基本的SQL语句,请参考SQL课程

NoSQL

你也许还听说过NoSQL数据库,很多NoSQL宣传其速度和规模远远超过关系数据库,所以很多同学觉得有了NoSQL是否就不需要SQL了呢?千万不要被他们忽悠了,连SQL都不明白怎么可能搞明白NoSQL呢?

数据库类别

既然我们要使用关系数据库,就必须选择一个关系数据库。目前广泛使用的关系数据库也就这么几种:

付费的商用数据库:

  • Oracle,典型的高富帅;
  • SQL Server,微软自家产品,Windows定制专款;
  • DB2,IBM的产品,听起来挺高端;
  • Sybase,曾经跟微软是好基友,后来关系破裂,现在家境惨淡。

这些数据库都是不开源而且付费的,最大的好处是花了钱出了问题可以找厂家解决,不过在Web的世界里,常常需要部署成千上万的数据库服务器,当然不能把大把大把的银子扔给厂家,所以,无论是Google、Facebook,还是国内的BAT,无一例外都选择了免费的开源数据库:

  • MySQL,大家都在用,一般错不了;
  • PostgreSQL,学术气息有点重,其实挺不错,但知名度没有MySQL高;
  • sqlite,嵌入式数据库,适合桌面和移动应用。

作为一个Java工程师,选择哪个免费数据库呢?当然是MySQL。因为MySQL普及率最高,出了错,可以很容易找到解决方法。而且,围绕MySQL有一大堆监控和运维的工具,安装和使用很方便。

安装MySQL

为了能继续后面的学习,你需要从MySQL官方网站下载并安装MySQL Community Server,这个版本是免费的,其他高级版本是要收钱的(请放心,收钱的功能我们用不上)。MySQL是跨平台的,选择对应的平台下载安装文件,安装即可。

安装时,MySQL会提示输入root用户的口令,请务必记清楚。如果怕记不住,就把口令设置为password

在Windows上,安装时请选择UTF-8编码,以便正确地处理中文。

在Mac或Linux上,需要编辑MySQL的配置文件,把数据库默认的编码全部改为UTF-8。MySQL的配置文件默认存放在/etc/my.cnf或者/etc/mysql/my.cnf

1
2
3
4
5
6
7
[client]
default-character-set = utf8

[mysqld]
default-storage-engine = INNODB
character-set-server = utf8
collation-server = utf8_general_ci

重启MySQL后,可以通过MySQL的客户端命令行检查编码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
$ mysql -u root -p
Enter password:
Welcome to the MySQL monitor...
...

mysql> show variables like '%char%';
+--------------------------+--------------------------------------------------------+
| Variable_name | Value |
+--------------------------+--------------------------------------------------------+
| character_set_client | utf8 |
| character_set_connection | utf8 |
| character_set_database | utf8 |
| character_set_filesystem | binary |
| character_set_results | utf8 |
| character_set_server | utf8 |
| character_set_system | utf8 |
| character_sets_dir | /usr/local/mysql-5.1.65-osx10.6-x86_64/share/charsets/ |
+--------------------------+--------------------------------------------------------+
8 rows in set (0.00 sec)

看到utf8字样就表示编码设置正确。

:如果MySQL的版本≥5.5.3,可以把编码设置为utf8mb4utf8mb4utf8完全兼容,但它支持最新的Unicode标准,可以显示emoji字符。

JDBC

什么是JDBC?JDBC是Java DataBase Connectivity的缩写,它是Java程序访问数据库的标准接口。

使用Java程序访问数据库时,Java代码并不是直接通过TCP连接去访问数据库,而是通过JDBC接口来访问,而JDBC接口则通过JDBC驱动来实现真正对数据库的访问。

例如,我们在Java代码中如果要访问MySQL,那么必须编写代码操作JDBC接口。注意到JDBC接口是Java标准库自带的,所以可以直接编译。而具体的JDBC驱动是由数据库厂商提供的,例如,MySQL的JDBC驱动由Oracle提供。因此,访问某个具体的数据库,我们只需要引入该厂商提供的JDBC驱动,就可以通过JDBC接口来访问,这样保证了Java程序编写的是一套数据库访问代码,却可以访问各种不同的数据库,因为他们都提供了标准的JDBC驱动:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐

│ ┌───────────────┐ │
│ Java App │
│ └───────────────┘ │

│ ▼ │
┌───────────────┐
│ │JDBC Interface │◀─┼─── JDK
└───────────────┘
│ │ │

│ ┌───────────────┐ │
│ JDBC Driver │◀───── Vendor
│ └───────────────┘ │

└ ─ ─ ─ ─ ─│─ ─ ─ ─ ─ ┘

┌───────────────┐
│ Database │
└───────────────┘

从代码来看,Java标准库自带的JDBC接口其实就是定义了一组接口,而某个具体的JDBC驱动其实就是实现了这些接口的类:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐

│ ┌───────────────┐ │
│ Java App │
│ └───────────────┘ │

│ ▼ │
┌───────────────┐
│ │JDBC Interface │◀─┼─── JDK
└───────────────┘
│ │ │

│ ┌───────────────┐ │
│ MySQL Driver │◀───── Oracle
│ └───────────────┘ │

└ ─ ─ ─ ─ ─│─ ─ ─ ─ ─ ┘

┌───────────────┐
│ MySQL │
└───────────────┘

实际上,一个MySQL的JDBC的驱动就是一个jar包,它本身也是纯Java编写的。我们自己编写的代码只需要引用Java标准库提供的java.sql包下面的相关接口,由此再间接地通过MySQL驱动的jar包通过网络访问MySQL服务器,所有复杂的网络通讯都被封装到JDBC驱动中,因此,Java程序本身只需要引入一个MySQL驱动的jar包就可以正常访问MySQL服务器:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐
┌───────────────┐
│ │ App.class │ │
└───────────────┘
│ │ │

│ ┌───────────────┐ │
│ java.sql.* │
│ └───────────────┘ │

│ ▼ │
┌───────────────┐ TCP ┌───────────────┐
│ │ mysql-xxx.jar │──┼────────▶│ MySQL │
└───────────────┘ └───────────────┘
└ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘
JVM

小结

使用JDBC的好处是:

  • 各数据库厂商使用相同的接口,Java代码不需要针对不同数据库分别开发;
  • Java程序编译期仅依赖java.sql包,不依赖具体数据库的jar包;
  • 可随时替换底层数据库,访问数据库的Java代码基本不变。

前面我们讲了Java程序要通过JDBC接口来查询数据库。JDBC是一套接口规范,它在哪呢?就在Java的标准库java.sql里放着,不过这里面大部分都是接口。接口并不能直接实例化,而是必须实例化对应的实现类,然后通过接口引用这个实例。那么问题来了:JDBC接口的实现类在哪?

因为JDBC接口并不知道我们要使用哪个数据库,所以,用哪个数据库,我们就去使用哪个数据库的“实现类”,我们把某个数据库实现了JDBC接口的jar包称为JDBC驱动。

因为我们选择了MySQL 5.x作为数据库,所以我们首先得找一个MySQL的JDBC驱动。所谓JDBC驱动,其实就是一个第三方jar包,我们直接添加一个Maven依赖就可以了:

1
2
3
4
5
6
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.47</version>
<scope>runtime</scope>
</dependency>

注意到这里添加依赖的scoperuntime,因为编译Java程序并不需要MySQL的这个jar包,只有在运行期才需要使用。如果把runtime改成compile,虽然也能正常编译,但是在IDE里写程序的时候,会多出来一大堆类似com.mysql.jdbc.Connection这样的类,非常容易与Java标准库的JDBC接口混淆,所以坚决不要设置为compile

有了驱动,我们还要确保MySQL在本机正常运行,并且还需要准备一点数据。这里我们用一个脚本创建数据库和表,然后插入一些数据:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
-- 创建数据库learjdbc:
DROP DATABASE IF EXISTS learnjdbc;
CREATE DATABASE learnjdbc;

-- 创建登录用户learn/口令learnpassword
CREATE USER IF NOT EXISTS learn@'%' IDENTIFIED BY 'learnpassword';
GRANT ALL PRIVILEGES ON learnjdbc.* TO learn@'%' WITH GRANT OPTION;
FLUSH PRIVILEGES;

-- 创建表students:
USE learnjdbc;
CREATE TABLE students (
id BIGINT AUTO_INCREMENT NOT NULL,
name VARCHAR(50) NOT NULL,
gender TINYINT(1) NOT NULL,
grade INT NOT NULL,
score INT NOT NULL,
PRIMARY KEY(id)
) Engine=INNODB DEFAULT CHARSET=UTF8;

-- 插入初始数据:
INSERT INTO students (name, gender, grade, score) VALUES ('小明', 1, 1, 88);
INSERT INTO students (name, gender, grade, score) VALUES ('小红', 1, 1, 95);
INSERT INTO students (name, gender, grade, score) VALUES ('小军', 0, 1, 93);
INSERT INTO students (name, gender, grade, score) VALUES ('小白', 0, 1, 100);
INSERT INTO students (name, gender, grade, score) VALUES ('小牛', 1, 2, 96);
INSERT INTO students (name, gender, grade, score) VALUES ('小兵', 1, 2, 99);
INSERT INTO students (name, gender, grade, score) VALUES ('小强', 0, 2, 86);
INSERT INTO students (name, gender, grade, score) VALUES ('小乔', 0, 2, 79);
INSERT INTO students (name, gender, grade, score) VALUES ('小青', 1, 3, 85);
INSERT INTO students (name, gender, grade, score) VALUES ('小王', 1, 3, 90);
INSERT INTO students (name, gender, grade, score) VALUES ('小林', 0, 3, 91);
INSERT INTO students (name, gender, grade, score) VALUES ('小贝', 0, 3, 77);

在控制台输入mysql -u root -p,输入root口令后以root身份,把上述SQL贴到控制台执行一遍就行。如果你运行的是最新版MySQL 8.x,需要调整一下CREATE USER语句。

JDBC连接

使用JDBC时,我们先了解什么是Connection。Connection代表一个JDBC连接,它相当于Java程序到数据库的连接(通常是TCP连接)。打开一个Connection时,需要准备URL、用户名和口令,才能成功连接到数据库。

URL是由数据库厂商指定的格式,例如,MySQL的URL是:

1
jdbc:mysql://<hostname>:<port>/<db>?key1=value1&key2=value2

假设数据库运行在本机localhost,端口使用标准的3306,数据库名称是learnjdbc,那么URL如下:

1
jdbc:mysql://localhost:3306/learnjdbc?useSSL=false&characterEncoding=utf8

后面的两个参数表示不使用SSL加密,使用UTF-8作为字符编码(注意MySQL的UTF-8是utf8)。

要获取数据库连接,使用如下代码:

1
2
3
4
5
6
7
8
9
// JDBC连接的URL, 不同数据库有不同的格式:
String JDBC_URL = "jdbc:mysql://localhost:3306/test";
String JDBC_USER = "root";
String JDBC_PASSWORD = "password";
// 获取连接:
Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD);
// TODO: 访问数据库...
// 关闭连接:
conn.close();

核心代码是DriverManager提供的静态方法getConnection()DriverManager会自动扫描classpath,找到所有的JDBC驱动,然后根据我们传入的URL自动挑选一个合适的驱动。

因为JDBC连接是一种昂贵的资源,所以使用后要及时释放。使用try (resource)来自动释放JDBC连接是一个好方法:

1
2
3
try (Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD)) {
...
}

JDBC查询

获取到JDBC连接后,下一步我们就可以查询数据库了。查询数据库分以下几步:

第一步,通过Connection提供的createStatement()方法创建一个Statement对象,用于执行一个查询;

第二步,执行Statement对象提供的executeQuery("SELECT * FROM students")并传入SQL语句,执行查询并获得返回的结果集,使用ResultSet来引用这个结果集;

第三步,反复调用ResultSetnext()方法并读取每一行结果。

完整查询代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
try (Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD)) {
try (Statement stmt = conn.createStatement()) {
try (ResultSet rs = stmt.executeQuery("SELECT id, grade, name, gender FROM students WHERE gender=1")) {
while (rs.next()) {
long id = rs.getLong(1); // 注意:索引从1开始
long grade = rs.getLong(2);
String name = rs.getString(3);
int gender = rs.getInt(4);
}
}
}
}

注意要点:

StatementResultSet都是需要关闭的资源,因此嵌套使用try (resource)确保及时关闭;

rs.next()用于判断是否有下一行记录,如果有,将自动把当前行移动到下一行(一开始获得ResultSet时当前行不是第一行);

ResultSet获取列时,索引从1开始而不是0

必须根据SELECT的列的对应位置来调用getLong(1)getString(2)这些方法,否则对应位置的数据类型不对,将报错。

SQL注入

使用Statement拼字符串非常容易引发SQL注入的问题,这是因为SQL参数往往是从方法参数传入的。

我们来看一个例子:假设用户登录的验证方法如下:

1
2
3
4
5
User login(String name, String pass) {
...
stmt.executeQuery("SELECT * FROM user WHERE login='" + name + "' AND pass='" + pass + "'");
...
}

其中,参数namepass通常都是Web页面输入后由程序接收到的。

如果用户的输入是程序期待的值,就可以拼出正确的SQL。例如:name = "bob",pass = "1234"

1
SELECT * FROM user WHERE login='bob' AND pass='1234'

但是,如果用户的输入是一个精心构造的字符串,就可以拼出意想不到的SQL,这个SQL也是正确的,但它查询的条件不是程序设计的意图。例如:name = "bob' OR pass=", pass = " OR pass='"

1
SELECT * FROM user WHERE login='bob' OR pass=' AND pass=' OR pass=''

这个SQL语句执行的时候,根本不用判断口令是否正确,这样一来,登录就形同虚设。

要避免SQL注入攻击,一个办法是针对所有字符串参数进行转义,但是转义很麻烦,而且需要在任何使用SQL的地方增加转义代码。

还有一个办法就是使用PreparedStatement。使用PreparedStatement可以完全避免SQL注入的问题,因为PreparedStatement始终使用?作为占位符,并且把数据连同SQL本身传给数据库,这样可以保证每次传给数据库的SQL语句是相同的,只是占位符的数据不同,还能高效利用数据库本身对查询的缓存。上述登录SQL如果用PreparedStatement可以改写如下:

1
2
3
4
5
6
7
8
User login(String name, String pass) {
...
String sql = "SELECT * FROM user WHERE login=? AND pass=?";
PreparedStatement ps = conn.prepareStatement(sql);
ps.setObject(1, name);
ps.setObject(2, pass);
...
}

所以,PreparedStatementStatement更安全,而且更快。

注意

使用Java对数据库进行操作时,必须使用PreparedStatement,严禁任何通过参数拼字符串的代码!

我们把上面使用Statement的代码改为使用PreparedStatement

1
2
3
4
5
6
7
8
9
10
11
12
13
14
try (Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD)) {
try (PreparedStatement ps = conn.prepareStatement("SELECT id, grade, name, gender FROM students WHERE gender=? AND grade=?")) {
ps.setObject(1, "M"); // 注意:索引从1开始
ps.setObject(2, 3);
try (ResultSet rs = ps.executeQuery()) {
while (rs.next()) {
long id = rs.getLong("id");
long grade = rs.getLong("grade");
String name = rs.getString("name");
String gender = rs.getString("gender");
}
}
}
}

使用PreparedStatementStatement稍有不同,必须首先调用setObject()设置每个占位符?的值,最后获取的仍然是ResultSet对象。

另外注意到从结果集读取列时,使用String类型的列名比索引要易读,而且不易出错。

注意到JDBC查询的返回值总是ResultSet,即使我们写这样的聚合查询SELECT SUM(score) FROM ...,也需要按结果集读取:

1
2
3
4
ResultSet rs = ...
if (rs.next()) {
double sum = rs.getDouble(1);
}

数据类型

有的童鞋可能注意到了,使用JDBC的时候,我们需要在Java数据类型和SQL数据类型之间进行转换。JDBC在java.sql.Types定义了一组常量来表示如何映射SQL数据类型,但是平时我们使用的类型通常也就以下几种:

SQL数据类型 Java数据类型
BIT, BOOL boolean
INTEGER int
BIGINT long
REAL float
FLOAT, DOUBLE double
CHAR, VARCHAR String
DECIMAL BigDecimal
DATE java.sql.Date, LocalDate
TIME java.sql.Time, LocalTime

注意:只有最新的JDBC驱动才支持LocalDateLocalTime

练习

使用JDBC查询数据库。

下载练习

小结

JDBC接口的Connection代表一个JDBC连接;

使用JDBC查询时,总是使用PreparedStatement进行查询而不是Statement

查询结果总是ResultSet,即使使用聚合查询也不例外。

数据库操作总结起来就四个字:增删改查,行话叫CRUD:Create,Retrieve,Update和Delete。

查就是查询,我们已经讲过了,就是使用PreparedStatement进行各种SELECT,然后处理结果集。现在我们来看看如何使用JDBC进行增删改。

插入

插入操作是INSERT,即插入一条新记录。通过JDBC进行插入,本质上也是用PreparedStatement执行一条SQL语句,不过最后执行的不是executeQuery(),而是executeUpdate()。示例代码如下:

1
2
3
4
5
6
7
8
9
10
try (Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD)) {
try (PreparedStatement ps = conn.prepareStatement(
"INSERT INTO students (id, grade, name, gender) VALUES (?,?,?,?)")) {
ps.setObject(1, 999); // 注意:索引从1开始
ps.setObject(2, 1); // grade
ps.setObject(3, "Bob"); // name
ps.setObject(4, "M"); // gender
int n = ps.executeUpdate(); // 1
}
}

设置参数与查询是一样的,有几个?占位符就必须设置对应的参数。虽然Statement也可以执行插入操作,但我们仍然要严格遵循绝不能手动拼SQL字符串的原则,以避免安全漏洞。

当成功执行executeUpdate()后,返回值是int,表示插入的记录数量。此处总是1,因为只插入了一条记录。

插入并获取主键

如果数据库的表设置了自增主键,那么在执行INSERT语句时,并不需要指定主键,数据库会自动分配主键。对于使用自增主键的程序,有个额外的步骤,就是如何获取插入后的自增主键的值。

要获取自增主键,不能先插入,再查询。因为两条SQL执行期间可能有别的程序也插入了同一个表。获取自增主键的正确写法是在创建PreparedStatement的时候,指定一个RETURN_GENERATED_KEYS标志位,表示JDBC驱动必须返回插入的自增主键。示例代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
try (Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD)) {
try (PreparedStatement ps = conn.prepareStatement(
"INSERT INTO students (grade, name, gender) VALUES (?,?,?)",
Statement.RETURN_GENERATED_KEYS)) {
ps.setObject(1, 1); // grade
ps.setObject(2, "Bob"); // name
ps.setObject(3, "M"); // gender
int n = ps.executeUpdate(); // 1
try (ResultSet rs = ps.getGeneratedKeys()) {
if (rs.next()) {
long id = rs.getLong(1); // 注意:索引从1开始
}
}
}
}

观察上述代码,有两点注意事项:

一是调用prepareStatement()时,第二个参数必须传入常量Statement.RETURN_GENERATED_KEYS,否则JDBC驱动不会返回自增主键;

二是执行executeUpdate()方法后,必须调用getGeneratedKeys()获取一个ResultSet对象,这个对象包含了数据库自动生成的主键的值,读取该对象的每一行来获取自增主键的值。如果一次插入多条记录,那么这个ResultSet对象就会有多行返回值。如果插入时有多列自增,那么ResultSet对象的每一行都会对应多个自增值(自增列不一定必须是主键)。

更新

更新操作是UPDATE语句,它可以一次更新若干列的记录。更新操作和插入操作在JDBC代码的层面上实际上没有区别,除了SQL语句不同:

1
2
3
4
5
6
7
try (Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD)) {
try (PreparedStatement ps = conn.prepareStatement("UPDATE students SET name=? WHERE id=?")) {
ps.setObject(1, "Bob"); // 注意:索引从1开始
ps.setObject(2, 999);
int n = ps.executeUpdate(); // 返回更新的行数
}
}

executeUpdate()返回数据库实际更新的行数。返回结果可能是正数,也可能是0(表示没有任何记录更新)。

删除

删除操作是DELETE语句,它可以一次删除若干行。和更新一样,除了SQL语句不同外,JDBC代码都是相同的:

1
2
3
4
5
6
try (Connection conn = DriverManager.getConnection(JDBC_URL, JDBC_USER, JDBC_PASSWORD)) {
try (PreparedStatement ps = conn.prepareStatement("DELETE FROM students WHERE id=?")) {
ps.setObject(1, 999); // 注意:索引从1开始
int n = ps.executeUpdate(); // 删除的行数
}
}

练习

使用JDBC更新数据库。

下载练习

小结

使用JDBC执行INSERTUPDATEDELETE都可视为更新操作;

更新操作使用PreparedStatementexecuteUpdate()进行,返回受影响的行数。

JDBC事务

数据库事务(Transaction)是由若干个SQL语句构成的一个操作序列,有点类似于Java的synchronized同步。数据库系统保证在一个事务中的所有SQL要么全部执行成功,要么全部不执行,即数据库事务具有ACID特性:

  • Atomicity:原子性
  • Consistency:一致性
  • Isolation:隔离性
  • Durability:持久性

数据库事务可以并发执行,而数据库系统从效率考虑,对事务定义了不同的隔离级别。SQL标准定义了4种隔离级别,分别对应可能出现的数据不一致的情况:

Isolation Level 脏读(Dirty Read) 不可重复读(Non Repeatable Read) 幻读(Phantom Read)
Read Uncommitted Yes Yes Yes
Read Committed - Yes Yes
Repeatable Read - - Yes
Serializable - - -

对应用程序来说,数据库事务非常重要,很多运行着关键任务的应用程序,都必须依赖数据库事务保证程序的结果正常。

举个例子:假设小明准备给小红支付100,两人在数据库中的记录主键分别是123456,那么用两条SQL语句操作如下:

1
2
UPDATE accounts SET balance = balance - 100 WHERE id = 123 AND balance >= 100;
UPDATE accounts SET balance = balance + 100 WHERE id = 456;

这两条语句必须以事务方式执行才能保证业务的正确性,因为一旦第一条SQL执行成功而第二条SQL失败的话,系统的钱就会凭空减少100,而有了事务,要么这笔转账成功,要么转账失败,双方账户的钱都不变。

这里我们不讨论详细的SQL事务,如果对SQL事务不熟悉,请参考SQL事务

要在JDBC中执行事务,本质上就是如何把多条SQL包裹在一个数据库事务中执行。我们来看JDBC的事务代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
Connection conn = openConnection();
try {
// 关闭自动提交:
conn.setAutoCommit(false);
// 执行多条SQL语句:
insert(); update(); delete();
// 提交事务:
conn.commit();
} catch (SQLException e) {
// 回滚事务:
conn.rollback();
} finally {
conn.setAutoCommit(true);
conn.close();
}

其中,开启事务的关键代码是conn.setAutoCommit(false),表示关闭自动提交。提交事务的代码在执行完指定的若干条SQL语句后,调用conn.commit()。要注意事务不是总能成功,如果事务提交失败,会抛出SQL异常(也可能在执行SQL语句的时候就抛出了),此时我们必须捕获并调用conn.rollback()回滚事务。最后,在finally中通过conn.setAutoCommit(true)Connection对象的状态恢复到初始值。

实际上,默认情况下,我们获取到Connection连接后,总是处于“自动提交”模式,也就是每执行一条SQL都是作为事务自动执行的,这也是为什么前面几节我们的更新操作总能成功的原因:因为默认有这种“隐式事务”。只要关闭了ConnectionautoCommit,那么就可以在一个事务中执行多条语句,事务以commit()方法结束。

如果要设定事务的隔离级别,可以使用如下代码:

1
2
// 设定隔离级别为READ COMMITTED:
conn.setTransactionIsolation(Connection.TRANSACTION_READ_COMMITTED);

如果没有调用上述方法,那么会使用数据库的默认隔离级别。MySQL的默认隔离级别是REPEATABLE_READ

练习

使用数据库事务。

下载练习

小结

数据库事务(Transaction)具有ACID特性:

  • Atomicity:原子性
  • Consistency:一致性
  • Isolation:隔离性
  • Durability:持久性

JDBC提供了事务的支持,使用Connection可以开启、提交或回滚事务。



使用JDBC操作数据库的时候,经常会执行一些批量操作。

例如,一次性给会员增加可用优惠券若干,我们可以执行以下SQL代码:

1
2
3
4
5
INSERT INTO coupons (user_id, type, expires) VALUES (123, 'DISCOUNT', '2030-12-31');
INSERT INTO coupons (user_id, type, expires) VALUES (234, 'DISCOUNT', '2030-12-31');
INSERT INTO coupons (user_id, type, expires) VALUES (345, 'DISCOUNT', '2030-12-31');
INSERT INTO coupons (user_id, type, expires) VALUES (456, 'DISCOUNT', '2030-12-31');
...

实际上执行JDBC时,因为只有占位符参数不同,所以SQL实际上是一样的:

1
2
3
4
5
6
7
for (var params : paramsList) {
PreparedStatement ps = conn.preparedStatement("INSERT INTO coupons (user_id, type, expires) VALUES (?,?,?)");
ps.setLong(params.get(0));
ps.setString(params.get(1));
ps.setString(params.get(2));
ps.executeUpdate();
}

类似的还有,给每个员工薪水增加10%~30%:

1
UPDATE employees SET salary = salary * ? WHERE id = ?

通过一个循环来执行每个PreparedStatement虽然可行,但是性能很低。SQL数据库对SQL语句相同,但只有参数不同的若干语句可以作为batch执行,即批量执行,这种操作有特别优化,速度远远快于循环执行每个SQL。

在JDBC代码中,我们可以利用SQL数据库的这一特性,把同一个SQL但参数不同的若干次操作合并为一个batch执行。我们以批量插入为例,示例代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
try (PreparedStatement ps = conn.prepareStatement("INSERT INTO students (name, gender, grade, score) VALUES (?, ?, ?, ?)")) {
// 对同一个PreparedStatement反复设置参数并调用addBatch():
for (Student s : students) {
ps.setString(1, s.name);
ps.setBoolean(2, s.gender);
ps.setInt(3, s.grade);
ps.setInt(4, s.score);
ps.addBatch(); // 添加到batch
}
// 执行batch:
int[] ns = ps.executeBatch();
for (int n : ns) {
System.out.println(n + " inserted."); // batch中每个SQL执行的结果数量
}
}

执行batch和执行一个SQL不同点在于,需要对同一个PreparedStatement反复设置参数并调用addBatch(),这样就相当于给一个SQL加上了多组参数,相当于变成了“多行”SQL。

第二个不同点是调用的不是executeUpdate(),而是executeBatch(),因为我们设置了多组参数,相应地,返回结果也是多个int值,因此返回类型是int[],循环int[]数组即可获取每组参数执行后影响的结果数量。

练习

使用Batch操作。

下载练习

小结

使用JDBC的batch操作会大大提高执行效率,对内容相同,参数不同的SQL,要优先考虑batch操作。

我们在讲多线程的时候说过,创建线程是一个昂贵的操作,如果有大量的小任务需要执行,并且频繁地创建和销毁线程,实际上会消耗大量的系统资源,往往创建和消耗线程所耗费的时间比执行任务的时间还长,所以,为了提高效率,可以用线程池。

类似的,在执行JDBC的增删改查的操作时,如果每一次操作都来一次打开连接,操作,关闭连接,那么创建和销毁JDBC连接的开销就太大了。为了避免频繁地创建和销毁JDBC连接,我们可以通过连接池(Connection Pool)复用已经创建好的连接。

JDBC连接池有一个标准的接口javax.sql.DataSource,注意这个类位于Java标准库中,但仅仅是接口。要使用JDBC连接池,我们必须选择一个JDBC连接池的实现。常用的JDBC连接池有:

  • HikariCP
  • C3P0
  • BoneCP
  • Druid

目前使用最广泛的是HikariCP。我们以HikariCP为例,要使用JDBC连接池,先添加HikariCP的依赖如下:

  • com.zaxxer:HikariCP:2.7.1

紧接着,我们需要创建一个DataSource实例,这个实例就是连接池:

1
2
3
4
5
6
7
8
HikariConfig config = new HikariConfig();
config.setJdbcUrl("jdbc:mysql://localhost:3306/test");
config.setUsername("root");
config.setPassword("password");
config.addDataSourceProperty("connectionTimeout", "1000"); // 连接超时:1秒
config.addDataSourceProperty("idleTimeout", "60000"); // 空闲超时:60秒
config.addDataSourceProperty("maximumPoolSize", "10"); // 最大连接数:10
DataSource ds = new HikariDataSource(config);

注意创建DataSource也是一个非常昂贵的操作,所以通常DataSource实例总是作为一个全局变量存储,并贯穿整个应用程序的生命周期。

有了连接池以后,我们如何使用它呢?和前面的代码类似,只是获取Connection时,把DriverManage.getConnection()改为ds.getConnection()

1
2
3
try (Connection conn = ds.getConnection()) { // 在此获取连接
...
} // 在此“关闭”连接

通过连接池获取连接时,并不需要指定JDBC的相关URL、用户名、口令等信息,因为这些信息已经存储在连接池内部了(创建HikariDataSource时传入的HikariConfig持有这些信息)。一开始,连接池内部并没有连接,所以,第一次调用ds.getConnection(),会迫使连接池内部先创建一个Connection,再返回给客户端使用。当我们调用conn.close()方法时(在try(resource){...}结束处),不是真正“关闭”连接,而是释放到连接池中,以便下次获取连接时能直接返回。

因此,连接池内部维护了若干个Connection实例,如果调用ds.getConnection(),就选择一个空闲连接,并标记它为“正在使用”然后返回,如果对Connection调用close(),那么就把连接再次标记为“空闲”从而等待下次调用。这样一来,我们就通过连接池维护了少量连接,但可以频繁地执行大量的SQL语句。

通常连接池提供了大量的参数可以配置,例如,维护的最小、最大活动连接数,指定一个连接在空闲一段时间后自动关闭等,需要根据应用程序的负载合理地配置这些参数。此外,大多数连接池都提供了详细的实时状态以便进行监控。

练习

使用JDBC连接池。

下载练习

小结

数据库连接池是一种复用Connection的组件,它可以避免反复创建新连接,提高JDBC代码的运行效率;

可以配置连接池的详细参数并监控连接池。

留言與分享

JAVA-XML与JSON

分類 编程语言, Java

XML简介

XML是可扩展标记语言(eXtensible Markup Language)的缩写,它是一种数据表示格式,可以描述非常复杂的数据结构,常用于传输和存储数据。

例如,一个描述书籍的XML文档可能如下:

1
2
3
4
5
6
7
8
9
10
11
12
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE note SYSTEM "book.dtd">
<book id="1">
<name>Java核心技术</name>
<author>Cay S. Horstmann</author>
<isbn lang="CN">1234567</isbn>
<tags>
<tag>Java</tag>
<tag>Network</tag>
</tags>
<pubDate/>
</book>

XML有几个特点:一是纯文本,默认使用UTF-8编码,二是可嵌套,适合表示结构化数据。如果把XML内容存为文件,那么它就是一个XML文件,例如book.xml。此外,XML内容经常通过网络作为消息传输。

XML的结构

XML有固定的结构,首行必定是<?xml version="1.0"?>,可以加上可选的编码。紧接着,如果以类似<!DOCTYPE note SYSTEM "book.dtd">声明的是文档定义类型(DTD:Document Type Definition),DTD是可选的。接下来是XML的文档内容,一个XML文档有且仅有一个根元素,根元素可以包含任意个子元素,元素可以包含属性,例如,<isbn lang="CN">1234567</isbn>包含一个属性lang="CN",且元素必须正确嵌套。如果是空元素,可以用<tag/>表示。

由于使用了<>以及引号等标识符,如果内容出现了特殊符号,需要使用&???;表示转义。例如,Java<tm>必须写成:

1
<name>Java&lt;tm&gt;</name>

常见的特殊字符如下:

字符 表示
< <
> >
& &
" "
'

格式正确的XML(Well Formed)是指XML的格式是正确的,可以被解析器正常读取。而合法的XML是指,不但XML格式正确,而且它的数据结构可以被DTD或者XSD验证。

DTD文档可以指定一系列规则,例如:

  • 根元素必须是book
  • book元素必须包含nameauthor等指定元素
  • isbn元素必须包含属性lang

如何验证XML文件的正确性呢?最简单的方式是通过浏览器验证。可以直接把XML文件拖拽到浏览器窗口,如果格式错误,浏览器会报错。

和结构类似的HTML不同,浏览器对HTML有一定的“容错性”,缺少关闭标签也可以被解析,但XML要求严格的格式,任何没有正确嵌套的标签都会导致错误。

XML是一个技术体系,除了我们经常用到的XML文档本身外,XML还支持:

  • DTD和XSD:验证XML结构和数据是否有效;
  • Namespace:XML节点和属性的名字空间;
  • XSLT:把XML转化为另一种文本;
  • XPath:一种XML节点查询语言;

实际上,XML的这些相关技术实现起来非常复杂,在实际应用中很少用到,通常了解一下就可以了。

小结

XML使用嵌套结构的数据表示方式,支持格式验证;

XML常用于配置文件、网络消息传输等。



使用DOM

因为XML是一种树形结构的文档,它有两种标准的解析API:

  • DOM:一次性读取XML,并在内存中表示为树形结构;
  • SAX:以流的形式读取XML,使用事件回调。

我们先来看如何使用DOM来读取XML。

DOM是Document Object Model的缩写,DOM模型就是把XML结构作为一个树形结构处理,从根节点开始,每个节点都可以包含任意个子节点。

我们以下面的XML为例:

1
2
3
4
5
6
7
8
9
10
11
<?xml version="1.0" encoding="UTF-8" ?>
<book id="1">
<name>Java核心技术</name>
<author>Cay S. Horstmann</author>
<isbn lang="CN">1234567</isbn>
<tags>
<tag>Java</tag>
<tag>Network</tag>
</tags>
<pubDate/>
</book>

如果解析为DOM结构,它大概长这样:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
                      ┌─────────┐
│document │
└─────────┘


┌─────────┐
│ book │
└─────────┘

┌──────────┬──────────┼──────────┬──────────┐
▼ ▼ ▼ ▼ ▼
┌─────────┐┌─────────┐┌─────────┐┌─────────┐┌─────────┐
│ name ││ author ││ isbn ││ tags ││ pubDate │
└─────────┘└─────────┘└─────────┘└─────────┘└─────────┘

┌────┴────┐
▼ ▼
┌───────┐ ┌───────┐
│ tag │ │ tag │
└───────┘ └───────┘

注意到最顶层的document代表XML文档,它是真正的“根”,而<book>虽然是根元素,但它是document的一个子节点。

Java提供了DOM API来解析XML,它使用下面的对象来表示XML的内容:

  • Document:代表整个XML文档;
  • Element:代表一个XML元素;
  • Attribute:代表一个元素的某个属性。

使用DOM API解析一个XML文档的代码如下:

1
2
3
4
InputStream input = Main.class.getResourceAsStream("/book.xml");
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
DocumentBuilder db = dbf.newDocumentBuilder();
Document doc = db.parse(input);

DocumentBuilder.parse()用于解析一个XML,它可以接收InputStream,File或者URL,如果解析无误,我们将获得一个Document对象,这个对象代表了整个XML文档的树形结构,需要遍历以便读取指定元素的值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
void printNode(Node n, int indent) {
for (int i = 0; i < indent; i++) {
System.out.print(' ');
}
switch (n.getNodeType()) {
case Node.DOCUMENT_NODE: // Document节点
System.out.println("Document: " + n.getNodeName());
break;
case Node.ELEMENT_NODE: // 元素节点
System.out.println("Element: " + n.getNodeName());
break;
case Node.TEXT_NODE: // 文本
System.out.println("Text: " + n.getNodeName() + " = " + n.getNodeValue());
break;
case Node.ATTRIBUTE_NODE: // 属性
System.out.println("Attr: " + n.getNodeName() + " = " + n.getNodeValue());
break;
default: // 其他
System.out.println("NodeType: " + n.getNodeType() + ", NodeName: " + n.getNodeName());
}
for (Node child = n.getFirstChild(); child != null; child = child.getNextSibling()) {
printNode(child, indent + 1);
}
}

解析结构如下:

1
2
3
4
5
6
7
8
9
10
11
12
Document: #document
Element: book
Text: #text =

Element: name
Text: #text = Java核心技术
Text: #text =

Element: author
Text: #text = Cay S. Horstmann
Text: #text =
...

对于DOM API解析出来的结构,我们从根节点Document出发,可以遍历所有子节点,获取所有元素、属性、文本数据,还可以包括注释,这些节点被统称为Node,每个Node都有自己的Type,根据Type来区分一个Node到底是元素,还是属性,还是文本,等等。

使用DOM API时,如果要读取某个元素的文本,需要访问它的Text类型的子节点,所以使用起来还是比较繁琐的。

练习

使用DOM解析XML。

下载练习

小结

Java提供的DOM API可以将XML解析为DOM结构,以Document对象表示;

DOM可在内存中完整表示XML数据结构;

DOM解析速度慢,内存占用大。



使用SAX

使用DOM解析XML的优点是用起来省事,但它的主要缺点是内存占用太大。

另一种解析XML的方式是SAX。SAX是Simple API for XML的缩写,它是一种基于流的解析方式,边读取XML边解析,并以事件回调的方式让调用者获取数据。因为是一边读一边解析,所以无论XML有多大,占用的内存都很小。

SAX解析会触发一系列事件:

  • startDocument:开始读取XML文档;
  • startElement:读取到了一个元素,例如<book>
  • characters:读取到了字符;
  • endElement:读取到了一个结束的元素,例如</book>
  • endDocument:读取XML文档结束。

如果我们用SAX API解析XML,Java代码如下:

1
2
3
4
InputStream input = Main.class.getResourceAsStream("/book.xml");
SAXParserFactory spf = SAXParserFactory.newInstance();
SAXParser saxParser = spf.newSAXParser();
saxParser.parse(input, new MyHandler());

关键代码SAXParser.parse()除了需要传入一个InputStream外,还需要传入一个回调对象,这个对象要继承自DefaultHandler

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
class MyHandler extends DefaultHandler {
public void startDocument() throws SAXException {
print("start document");
}

public void endDocument() throws SAXException {
print("end document");
}

public void startElement(String uri, String localName, String qName, Attributes attributes) throws SAXException {
print("start element:", localName, qName);
}

public void endElement(String uri, String localName, String qName) throws SAXException {
print("end element:", localName, qName);
}

public void characters(char[] ch, int start, int length) throws SAXException {
print("characters:", new String(ch, start, length));
}

public void error(SAXParseException e) throws SAXException {
print("error:", e);
}

void print(Object... objs) {
for (Object obj : objs) {
System.out.print(obj);
System.out.print(" ");
}
System.out.println();
}
}

运行SAX解析代码,可以打印出下面的结果:

1
2
3
4
5
6
7
8
9
10
11
start document
start element: book
characters:

start element: name
characters: Java核心技术
end element: name
characters:

start element: author
...

如果要读取<name>节点的文本,我们就必须在解析过程中根据startElement()endElement()定位当前正在读取的节点,可以使用栈结构保存,每遇到一个startElement()入栈,每遇到一个endElement()出栈,这样,读到characters()时我们才知道当前读取的文本是哪个节点的。可见,使用SAX API仍然比较麻烦。

练习

使用SAX解析XML。

下载练习

小结

SAX是一种流式解析XML的API;

SAX通过事件触发,读取速度快,消耗内存少;

调用方必须通过回调方法获得解析过程中的数据。



使用Jackson

前面我们介绍了DOM和SAX两种解析XML的标准接口。但是,无论是DOM还是SAX,使用起来都不直观。

观察XML文档的结构:

1
2
3
4
5
6
7
8
9
10
11
<?xml version="1.0" encoding="UTF-8" ?>
<book id="1">
<name>Java核心技术</name>
<author>Cay S. Horstmann</author>
<isbn lang="CN">1234567</isbn>
<tags>
<tag>Java</tag>
<tag>Network</tag>
</tags>
<pubDate/>
</book>

我们发现,它完全可以对应到一个定义好的JavaBean中:

1
2
3
4
5
6
7
8
public class Book {
public long id;
public String name;
public String author;
public String isbn;
public List<String> tags;
public String pubDate;
}

如果能直接从XML文档解析成一个JavaBean,那比DOM或者SAX不知道容易到哪里去了。

幸运的是,一个名叫Jackson的开源的第三方库可以轻松做到XML到JavaBean的转换。我们要使用Jackson,先添加一个Maven的依赖:

  • com.fasterxml.jackson.dataformat:jackson-dataformat-xml:2.10.1

然后,定义好JavaBean,就可以用下面几行代码解析:

1
2
3
4
5
6
7
8
9
10
InputStream input = Main.class.getResourceAsStream("/book.xml");
JacksonXmlModule module = new JacksonXmlModule();
XmlMapper mapper = new XmlMapper(module);
Book book = mapper.readValue(input, Book.class);
System.out.println(book.id);
System.out.println(book.name);
System.out.println(book.author);
System.out.println(book.isbn);
System.out.println(book.tags);
System.out.println(book.pubDate);

注意到XmlMapper就是我们需要创建的核心对象,可以用readValue(InputStream, Class)直接读取XML并返回一个JavaBean。运行上述代码,就可以直接从Book对象中拿到数据:

1
2
3
4
5
6
1
Java核心技术
Cay S. Horstmann
1234567
[Java, Network]
null

如果要解析的数据格式不是Jackson内置的标准格式,那么需要编写一点额外的扩展来告诉Jackson如何自定义解析。这里我们不做深入讨论,可以参考Jackson的官方文档

练习

使用Jackson解析XML。

下载练习

小结

使用Jackson解析XML,可以直接把XML解析为JavaBean,十分方便。



前面我们讨论了XML这种数据格式。XML的特点是功能全面,但标签繁琐,格式复杂。在Web上使用XML现在越来越少,取而代之的是JSON这种数据结构。

JSON是JavaScript Object Notation的缩写,它去除了所有JavaScript执行代码,只保留JavaScript的对象格式。一个典型的JSON如下:

1
2
3
4
5
6
7
8
9
10
{
"id": 1,
"name": "Java核心技术",
"author": {
"firstName": "Abc",
"lastName": "Xyz"
},
"isbn": "1234567",
"tags": ["Java", "Network"]
}

JSON作为数据传输的格式,有几个显著的优点:

  • JSON只允许使用UTF-8编码,不存在编码问题;
  • JSON只允许使用双引号作为key,特殊字符用\转义,格式简单;
  • 浏览器内置JSON支持,如果把数据用JSON发送给浏览器,可以用JavaScript直接处理。

因此,JSON适合表示层次结构,因为它格式简单,仅支持以下几种数据类型:

  • 键值对:{"key": value}
  • 数组:[1, 2, 3]
  • 字符串:"abc"
  • 数值(整数和浮点数):12.34
  • 布尔值:truefalse
  • 空值:null

浏览器直接支持使用JavaScript对JSON进行读写:

1
2
3
4
5
// JSON string to JavaScript object:
jsObj = JSON.parse(jsonStr);

// JavaScript object to JSON string:
jsonStr = JSON.stringify(jsObj);

所以,开发Web应用的时候,使用JSON作为数据传输,在浏览器端非常方便。因为JSON天生适合JavaScript处理,所以,绝大多数REST API都选择JSON作为数据传输格式。

现在问题来了:使用Java如何对JSON进行读写?

在Java中,针对JSON也有标准的JSR 353 API,但是我们在前面讲XML的时候发现,如果能直接在XML和JavaBean之间互相转换是最好的。类似的,如果能直接在JSON和JavaBean之间转换,那么用起来就简单多了。

常用的用于解析JSON的第三方库有:

  • Jackson
  • GSON
  • JSON-lib

注意到上一节提到的那个可以解析XML的浓眉大眼的Jackson也可以解析JSON!因此我们只需要引入以下Maven依赖:

  • com.fasterxml.jackson.core:jackson-databind:2.12.0

就可以使用下面的代码解析一个JSON文件:

1
2
3
4
5
InputStream input = Main.class.getResourceAsStream("/book.json");
ObjectMapper mapper = new ObjectMapper();
// 反序列化时忽略不存在的JavaBean属性:
mapper.configure(DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES, false);
Book book = mapper.readValue(input, Book.class);

核心代码是创建一个ObjectMapper对象。关闭DeserializationFeature.FAIL_ON_UNKNOWN_PROPERTIES功能使得解析时如果JavaBean不存在该属性时解析不会报错。

把JSON解析为JavaBean的过程称为反序列化。如果把JavaBean变为JSON,那就是序列化。要实现JavaBean到JSON的序列化,只需要一行代码:

1
String json = mapper.writeValueAsString(book);

要把JSON的某些值解析为特定的Java对象,例如LocalDate,也是完全可以的。例如:

1
2
3
4
{
"name": "Java核心技术",
"pubDate": "2016-09-01"
}

要解析为:

1
2
3
4
public class Book {
public String name;
public LocalDate pubDate;
}

只需要引入标准的JSR 310关于JavaTime的数据格式定义至Maven:

  • com.fasterxml.jackson.datatype:jackson-datatype-jsr310:2.12.0

然后,在创建ObjectMapper时,注册一个新的JavaTimeModule

1
ObjectMapper mapper = new ObjectMapper().registerModule(new JavaTimeModule());

有些时候,内置的解析规则和扩展的解析规则如果都不满足我们的需求,还可以自定义解析。

举个例子,假设Book类的isbn是一个BigInteger

1
2
3
4
public class Book {
public String name;
public BigInteger isbn;
}

但JSON数据并不是标准的整形格式:

1
2
3
4
{
"name": "Java核心技术",
"isbn": "978-7-111-54742-6"
}

直接解析,肯定报错。这时,我们需要自定义一个IsbnDeserializer,用于解析含有非数字的字符串:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public class IsbnDeserializer extends JsonDeserializer<BigInteger> {
public BigInteger deserialize(JsonParser p, DeserializationContext ctxt) throws IOException, JsonProcessingException {
// 读取原始的JSON字符串内容:
String s = p.getValueAsString();
if (s != null) {
try {
return new BigInteger(s.replace("-", ""));
} catch (NumberFormatException e) {
throw new JsonParseException(p, s, e);
}
}
return null;
}
}

然后,在Book类中使用注解标注:

1
2
3
4
5
6
public class Book {
public String name;
// 表示反序列化isbn时使用自定义的IsbnDeserializer:
@JsonDeserialize(using = IsbnDeserializer.class)
public BigInteger isbn;
}

类似的,自定义序列化时我们需要自定义一个IsbnSerializer,然后在Book类中标注@JsonSerialize(using = ...)即可。

反序列化

在反序列化时,Jackson要求Java类需要一个默认的无参数构造方法,否则,无法直接实例化此类。存在带参数构造方法的类,如果要反序列化,注意再提供一个无参数构造方法。

对于enum字段,Jackson按String类型处理,即:

1
2
3
class Book {
public DayOfWeek start = MONDAY;
}

序列化为:

1
2
3
{
"start": "MONDAY"
}

对于record类型,Jackson会自动找出它的带参数构造方法,并根据JSON的key进行匹配,可直接反序列化。对record类型的支持需要版本2.12.0以上。

练习

使用Jackson解析JSON。

下载练习

小结

JSON是轻量级的数据表示方式,常用于Web应用;

Jackson可以实现JavaBean和JSON之间的转换;

可以通过Module扩展Jackson能处理的数据类型;

可以自定义JsonSerializerJsonDeserializer来定制序列化和反序列化。

留言與分享

JAVA-网络编程

分類 编程语言, Java

在学习Java网络编程之前,我们先来了解什么是计算机网络。

计算机网络是指两台或更多的计算机组成的网络,在同一个网络中,任意两台计算机都可以直接通信,因为所有计算机都需要遵循同一种网络协议。

那什么是互联网呢?互联网是网络的网络(Internet),即把很多计算机网络连接起来,形成一个全球统一的互联网。

对某个特定的计算机网络来说,它可能使用网络协议ABC,而另一个计算机网络可能使用网络协议XYZ。如果计算机网络各自的通讯协议不统一,就没法把不同的网络连接起来形成互联网。因此,为了把计算机网络接入互联网,就必须使用TCP/IP协议。

TCP/IP协议泛指互联网协议,其中最重要的两个协议是TCP协议和IP协议。只有使用TCP/IP协议的计算机才能够联入互联网,使用其他网络协议(例如NetBIOS、AppleTalk协议等)是无法联入互联网的。

IP地址

在互联网中,一个IP地址用于唯一标识一个网络接口(Network Interface)。一台联入互联网的计算机肯定有一个IP地址,但也可能有多个IP地址。

IP地址分为IPv4和IPv6两种。IPv4采用32位地址,类似101.202.99.12,而IPv6采用128位地址,类似2001:0DA8:100A:0000:0000:1020:F2F3:1428。IPv4地址总共有232个(大约42亿),而IPv6地址则总共有2128个(大约340万亿亿亿亿),IPv4的地址目前已耗尽,而IPv6的地址是根本用不完的。

IP地址又分为公网IP地址和内网IP地址。公网IP地址可以直接被访问,内网IP地址只能在内网访问。内网IP地址类似于:

  • 192.168.x.x
  • 10.x.x.x

有一个特殊的IP地址,称之为本机地址,它总是127.0.0.1

IPv4地址实际上是一个32位整数。例如:

1
2
3
1707762444 = 0x65ca630c
= 65 ca 63 0c
= 101.202.99.12

如果一台计算机只有一个网卡,并且接入了网络,那么,它有一个本机地址127.0.0.1,还有一个IP地址,例如101.202.99.12,可以通过这个IP地址接入网络。

如果一台计算机有两块网卡,那么除了本机地址,它可以有两个IP地址,可以分别接入两个网络。通常连接两个网络的设备是路由器或者交换机,它至少有两个IP地址,分别接入不同的网络,让网络之间连接起来。

如果两台计算机位于同一个网络,那么他们之间可以直接通信,因为他们的IP地址前段是相同的,也就是网络号是相同的。网络号是IP地址通过子网掩码过滤后得到的。例如:

某台计算机的IP是101.202.99.2,子网掩码是255.255.255.0,那么计算该计算机的网络号是:

1
2
3
IP = 101.202.99.2
Mask = 255.255.255.0
Network = IP & Mask = 101.202.99.0

每台计算机都需要正确配置IP地址和子网掩码,根据这两个就可以计算网络号,如果两台计算机计算出的网络号相同,说明两台计算机在同一个网络,可以直接通信。如果两台计算机计算出的网络号不同,那么两台计算机不在同一个网络,不能直接通信,它们之间必须通过路由器或者交换机这样的网络设备间接通信,我们把这种设备称为网关。

网关的作用就是连接多个网络,负责把来自一个网络的数据包发到另一个网络,这个过程叫路由。

所以,一台计算机的一个网卡会有3个关键配置:

network

  • IP地址,例如:10.0.2.15
  • 子网掩码,例如:255.255.255.0
  • 网关的IP地址,例如:10.0.2.2

域名

因为直接记忆IP地址非常困难,所以我们通常使用域名访问某个特定的服务。域名解析服务器DNS负责把域名翻译成对应的IP,客户端再根据IP地址访问服务器。

nslookup可以查看域名对应的IP地址:

1
2
3
4
5
6
7
$ nslookup liaoxuefeng.com
Server: xxx.xxx.xxx.xxx
Address: xxx.xxx.xxx.xxx#53

Non-authoritative answer:
Name: liaoxuefeng.com
Address: xxx.xxx.xxx.xxx

有一个特殊的本机域名localhost,它对应的IP地址总是本机地址127.0.0.1

网络模型

由于计算机网络从底层的传输到高层的软件设计十分复杂,要合理地设计计算机网络模型,必须采用分层模型,每一层负责处理自己的操作。OSI(Open System Interconnect)网络模型是ISO组织定义的一个计算机互联的标准模型,注意它只是一个定义,目的是为了简化网络各层的操作,提供标准接口便于实现和维护。这个模型从上到下依次是:

  • 应用层,提供应用程序之间的通信;
  • 表示层:处理数据格式,加解密等等;
  • 会话层:负责建立和维护会话;
  • 传输层:负责提供端到端的可靠传输;
  • 网络层:负责根据目标地址选择路由来传输数据;
  • 链路层和物理层负责把数据进行分片并且真正通过物理网络传输,例如,无线网、光纤等。

互联网实际使用的TCP/IP模型并不是对应到OSI的7层模型,而是大致对应OSI的5层模型:

OSI TCP/IP
应用层 应用层
表示层
会话层
传输层 传输层
网络层 IP层
链路层 网络接口层
物理层

常用协议

IP协议是一个分组交换,它不保证可靠传输。而TCP协议是传输控制协议,它是面向连接的协议,支持可靠传输和双向通信。TCP协议是建立在IP协议之上的,简单地说,IP协议只负责发数据包,不保证顺序和正确性,而TCP协议负责控制数据包传输,它在传输数据之前需要先建立连接,建立连接后才能传输数据,传输完后还需要断开连接。TCP协议之所以能保证数据的可靠传输,是通过接收确认、超时重传这些机制实现的。并且,TCP协议允许双向通信,即通信双方可以同时发送和接收数据。

TCP协议也是应用最广泛的协议,许多高级协议都是建立在TCP协议之上的,例如HTTP、SMTP等。

UDP协议(User Datagram Protocol)是一种数据报文协议,它是无连接协议,不保证可靠传输。因为UDP协议在通信前不需要建立连接,因此它的传输效率比TCP高,而且UDP协议比TCP协议要简单得多。

选择UDP协议时,传输的数据通常是能容忍丢失的,例如,一些语音视频通信的应用会选择UDP协议。

小结

计算机网络的基本概念主要有:

  • 计算机网络:由两台或更多计算机组成的网络;
  • 互联网:连接网络的网络;
  • IP地址:计算机的网络接口(通常是网卡)在网络中的唯一标识;
  • 网关:负责连接多个网络,并在多个网络之间转发数据的计算机,通常是路由器或交换机;
  • 网络协议:互联网使用TCP/IP协议,它泛指互联网协议簇;
  • IP协议:一种分组交换传输协议;
  • TCP协议:一种面向连接,可靠传输的协议;
  • UDP协议:一种无连接,不可靠传输的协议。

在开发网络应用程序的时候,我们又会遇到Socket这个概念。Socket是一个抽象概念,一个应用程序通过一个Socket来建立一个远程连接,而Socket内部通过TCP/IP协议把数据传输到网络:

1
2
3
4
5
6
7
8
9
┌───────────┐                                ┌───────────┐
│Application│ │Application│
├───────────┤ ├───────────┤
│ Socket │ │ Socket │
├───────────┤ ├───────────┤
│ TCP │ │ TCP │
├───────────┤ ┌──────┐ ┌──────┐ ├───────────┤
│ IP │◀───▶│Router│◀────▶│Router│◀───▶│ IP │
└───────────┘ └──────┘ └──────┘ └───────────┘

Socket、TCP和部分IP的功能都是由操作系统提供的,不同的编程语言只是提供了对操作系统调用的简单的封装。例如,Java提供的几个Socket相关的类就封装了操作系统提供的接口。

为什么需要Socket进行网络通信?因为仅仅通过IP地址进行通信是不够的,同一台计算机同一时间会运行多个网络应用程序,例如浏览器、QQ、邮件客户端等。当操作系统接收到一个数据包的时候,如果只有IP地址,它没法判断应该发给哪个应用程序,所以,操作系统抽象出Socket接口,每个应用程序需要各自对应到不同的Socket,数据包才能根据Socket正确地发到对应的应用程序。

一个Socket就是由IP地址和端口号(范围是0~65535)组成,可以把Socket简单理解为IP地址加端口号。端口号总是由操作系统分配,它是一个0~65535之间的数字,其中,小于1024的端口属于特权端口,需要管理员权限,大于1024的端口可以由任意用户的应用程序打开。

  • Browser: 101.202.99.2:1201
  • QQ: 101.202.99.2:1304
  • Email: 101.202.99.2:15000

使用Socket进行网络编程时,本质上就是两个进程之间的网络通信。其中一个进程必须充当服务器端,它会主动监听某个指定的端口,另一个进程必须充当客户端,它必须主动连接服务器的IP地址和指定端口,如果连接成功,服务器端和客户端就成功地建立了一个TCP连接,双方后续就可以随时发送和接收数据。

因此,当Socket连接成功地在服务器端和客户端之间建立后:

  • 对服务器端来说,它的Socket是指定的IP地址和指定的端口号;
  • 对客户端来说,它的Socket是它所在计算机的IP地址和一个由操作系统分配的随机端口号。

服务器端

要使用Socket编程,我们首先要编写服务器端程序。Java标准库提供了ServerSocket来实现对指定IP和指定端口的监听。ServerSocket的典型实现代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
public class Server {
public static void main(String[] args) throws IOException {
ServerSocket ss = new ServerSocket(6666); // 监听指定端口
System.out.println("server is running...");
for (;;) {
Socket sock = ss.accept();
System.out.println("connected from " + sock.getRemoteSocketAddress());
Thread t = new Handler(sock);
t.start();
}
}
}

class Handler extends Thread {
Socket sock;

public Handler(Socket sock) {
this.sock = sock;
}

@Override
public void run() {
try (InputStream input = this.sock.getInputStream()) {
try (OutputStream output = this.sock.getOutputStream()) {
handle(input, output);
}
} catch (Exception e) {
try {
this.sock.close();
} catch (IOException ioe) {
}
System.out.println("client disconnected.");
}
}

private void handle(InputStream input, OutputStream output) throws IOException {
var writer = new BufferedWriter(new OutputStreamWriter(output, StandardCharsets.UTF_8));
var reader = new BufferedReader(new InputStreamReader(input, StandardCharsets.UTF_8));
writer.write("hello\n");
writer.flush();
for (;;) {
String s = reader.readLine();
if (s.equals("bye")) {
writer.write("bye\n");
writer.flush();
break;
}
writer.write("ok: " + s + "\n");
writer.flush();
}
}
}

服务器端通过代码:

1
ServerSocket ss = new ServerSocket(6666);

在指定端口6666监听。这里我们没有指定IP地址,表示在计算机的所有网络接口上进行监听。

如果ServerSocket监听成功,我们就使用一个无限循环来处理客户端的连接:

1
2
3
4
5
for (;;) {
Socket sock = ss.accept();
Thread t = new Handler(sock);
t.start();
}

注意到代码ss.accept()表示每当有新的客户端连接进来后,就返回一个Socket实例,这个Socket实例就是用来和刚连接的客户端进行通信的。由于客户端很多,要实现并发处理,我们就必须为每个新的Socket创建一个新线程来处理,这样,主线程的作用就是接收新的连接,每当收到新连接后,就创建一个新线程进行处理。

我们在多线程编程的章节中介绍过线程池,这里也完全可以利用线程池来处理客户端连接,能大大提高运行效率。

如果没有客户端连接进来,accept()方法会阻塞并一直等待。如果有多个客户端同时连接进来,ServerSocket会把连接扔到队列里,然后一个一个处理。对于Java程序而言,只需要通过循环不断调用accept()就可以获取新的连接。

客户端

相比服务器端,客户端程序就要简单很多。一个典型的客户端程序如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
public class Client {
public static void main(String[] args) throws IOException {
Socket sock = new Socket("localhost", 6666); // 连接指定服务器和端口
try (InputStream input = sock.getInputStream()) {
try (OutputStream output = sock.getOutputStream()) {
handle(input, output);
}
}
sock.close();
System.out.println("disconnected.");
}

private static void handle(InputStream input, OutputStream output) throws IOException {
var writer = new BufferedWriter(new OutputStreamWriter(output, StandardCharsets.UTF_8));
var reader = new BufferedReader(new InputStreamReader(input, StandardCharsets.UTF_8));
Scanner scanner = new Scanner(System.in);
System.out.println("[server] " + reader.readLine());
for (;;) {
System.out.print(">>> "); // 打印提示
String s = scanner.nextLine(); // 读取一行输入
writer.write(s);
writer.newLine();
writer.flush();
String resp = reader.readLine();
System.out.println("<<< " + resp);
if (resp.equals("bye")) {
break;
}
}
}
}

客户端程序通过:

1
Socket sock = new Socket("localhost", 6666);

连接到服务器端,注意上述代码的服务器地址是"localhost",表示本机地址,端口号是6666。如果连接成功,将返回一个Socket实例,用于后续通信。

Socket流

当Socket连接创建成功后,无论是服务器端,还是客户端,我们都使用Socket实例进行网络通信。因为TCP是一种基于流的协议,因此,Java标准库使用InputStreamOutputStream来封装Socket的数据流,这样我们使用Socket的流,和普通IO流类似:

1
2
3
4
// 用于读取网络数据:
InputStream in = sock.getInputStream();
// 用于写入网络数据:
OutputStream out = sock.getOutputStream();

最后我们重点来看看,为什么写入网络数据时,要调用flush()方法。

如果不调用flush(),我们很可能会发现,客户端和服务器都收不到数据,这并不是Java标准库的设计问题,而是我们以流的形式写入数据的时候,并不是一写入就立刻发送到网络,而是先写入内存缓冲区,直到缓冲区满了以后,才会一次性真正发送到网络,这样设计的目的是为了提高传输效率。如果缓冲区的数据很少,而我们又想强制把这些数据发送到网络,就必须调用flush()强制把缓冲区数据发送出去。

练习

使用Socket实现服务器和客户端通信。

下载练习

小结

使用Java进行TCP编程时,需要使用Socket模型:

  • 服务器端用ServerSocket监听指定端口;
  • 客户端使用Socket(InetAddress, port)连接服务器;
  • 服务器端用accept()接收连接并返回Socket
  • 双方通过Socket打开InputStream/OutputStream读写数据;
  • 服务器端通常使用多线程同时处理多个客户端连接,利用线程池可大幅提升效率;
  • flush()用于强制输出缓冲区到网络。

和TCP编程相比,UDP编程就简单得多,因为UDP没有创建连接,数据包也是一次收发一个,所以没有流的概念。

在Java中使用UDP编程,仍然需要使用Socket,因为应用程序在使用UDP时必须指定网络接口(IP)和端口号。注意:UDP端口和TCP端口虽然都使用0~65535,但他们是两套独立的端口,即一个应用程序用TCP占用了端口1234,不影响另一个应用程序用UDP占用端口1234。

服务器端

在服务器端,使用UDP也需要监听指定的端口。Java提供了DatagramSocket来实现这个功能,代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
DatagramSocket ds = new DatagramSocket(6666); // 监听指定端口
for (;;) { // 无限循环
// 数据缓冲区:
byte[] buffer = new byte[1024];
DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
ds.receive(packet); // 收取一个UDP数据包
// 收取到的数据存储在buffer中,由packet.getOffset(), packet.getLength()指定起始位置和长度
// 将其按UTF-8编码转换为String:
String s = new String(packet.getData(), packet.getOffset(), packet.getLength(), StandardCharsets.UTF_8);
// 发送数据:
byte[] data = "ACK".getBytes(StandardCharsets.UTF_8);
packet.setData(data);
ds.send(packet);
}

服务器端首先使用如下语句在指定的端口监听UDP数据包:

1
DatagramSocket ds = new DatagramSocket(6666);

如果没有其他应用程序占据这个端口,那么监听成功,我们就使用一个无限循环来处理收到的UDP数据包:

1
2
3
for (;;) {
...
}

要接收一个UDP数据包,需要准备一个byte[]缓冲区,并通过DatagramPacket实现接收:

1
2
3
byte[] buffer = new byte[1024];
DatagramPacket packet = new DatagramPacket(buffer, buffer.length);
ds.receive(packet);

假设我们收取到的是一个String,那么,通过DatagramPacket返回的packet.getOffset()packet.getLength()确定数据在缓冲区的起止位置:

1
String s = new String(packet.getData(), packet.getOffset(), packet.getLength(), StandardCharsets.UTF_8);

当服务器收到一个DatagramPacket后,通常必须立刻回复一个或多个UDP包,因为客户端地址在DatagramPacket中,每次收到的DatagramPacket可能是不同的客户端,如果不回复,客户端就收不到任何UDP包。

发送UDP包也是通过DatagramPacket实现的,发送代码非常简单:

1
2
3
byte[] data = ...
packet.setData(data);
ds.send(packet);

客户端

和服务器端相比,客户端使用UDP时,只需要直接向服务器端发送UDP包,然后接收返回的UDP包:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
DatagramSocket ds = new DatagramSocket();
ds.setSoTimeout(1000);
ds.connect(InetAddress.getByName("localhost"), 6666); // 连接指定服务器和端口
// 发送:
byte[] data = "Hello".getBytes();
DatagramPacket packet = new DatagramPacket(data, data.length);
ds.send(packet);
// 接收:
byte[] buffer = new byte[1024];
packet = new DatagramPacket(buffer, buffer.length);
ds.receive(packet);
String resp = new String(packet.getData(), packet.getOffset(), packet.getLength());
ds.disconnect();
// 关闭:
ds.close();

客户端打开一个DatagramSocket使用以下代码:

1
2
3
DatagramSocket ds = new DatagramSocket();
ds.setSoTimeout(1000);
ds.connect(InetAddress.getByName("localhost"), 6666);

客户端创建DatagramSocket实例时并不需要指定端口,而是由操作系统自动指定一个当前未使用的端口。紧接着,调用setSoTimeout(1000)设定超时1秒,意思是后续接收UDP包时,等待时间最多不会超过1秒,否则在没有收到UDP包时,客户端会无限等待下去。这一点和服务器端不一样,服务器端可以无限等待,因为它本来就被设计成长时间运行。

注意到客户端的DatagramSocket还调用了一个connect()方法“连接”到指定的服务器端。不是说UDP是无连接的协议吗?为啥这里需要connect()

这个connect()方法不是真连接,它是为了在客户端的DatagramSocket实例中保存服务器端的IP和端口号,确保这个DatagramSocket实例只能往指定的地址和端口发送UDP包,不能往其他地址和端口发送。这么做不是UDP的限制,而是Java内置了安全检查。

后续的收发数据和服务器端是一致的。通常来说,客户端必须先发UDP包,因为客户端不发UDP包,服务器端就根本不知道客户端的地址和端口号。

如果客户端认为通信结束,就可以调用disconnect()断开连接:

1
ds.disconnect();

注意到disconnect()也不是真正地断开连接,它只是清除了客户端DatagramSocket实例记录的远程服务器地址和端口号,这样,DatagramSocket实例就可以连接另一个服务器端。

如果客户端希望向两个不同的服务器发送UDP包,有两种方法:

  1. 客户端可以创建两个DatagramSocket实例,用connect()连接到不同的服务器;
  2. 客户端也可以不调用connect()方法,而是在创建DatagramPacket的时候指定服务器地址,这样可以用一个DatagramSocket实例发送DatagramPacket到不同的服务器。

不调用connect()方法的代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
DatagramSocket ds = new DatagramSocket();
ds.setSoTimeout(1000);
// 发送到localhost:6666:
byte[] data1 = "Hello".getBytes();
var packet1 = new DatagramPacket(data1, data1.length, InetAddress.getByName("localhost"), 6666);
ds.send(packet1);
// 发送到localhost:8888:
byte[] data2 = "Hi".getBytes();
var packet2 = new DatagramPacket(data2, data2.length, InetAddress.getByName("localhost"), 8888);
ds.send(packet2);
// 关闭:
ds.close();

练习

使用UDP实现服务器和客户端通信。

下载练习

小结

使用UDP协议通信时,服务器和客户端双方无需建立连接:

  • 服务器端用DatagramSocket(port)监听端口;
  • 客户端使用DatagramSocket.connect()指定远程地址和端口;
  • 双方通过receive()send()读写数据;
  • DatagramSocket没有IO流接口,数据被直接写入byte[]缓冲区。

Email就是电子邮件。电子邮件的应用已经有几十年的历史了,我们熟悉的邮箱地址比如abc@example.com,邮件软件比如Outlook都是用来收发邮件的。

使用Java程序也可以收发电子邮件。我们先来看一下传统的邮件是如何发送的。

传统的邮件是通过邮局投递,然后从一个邮局到另一个邮局,最终到达用户的邮箱:

1
2
3
4
5
6
           ┌──────────┐    ┌──────────┐
│PostOffice│ │PostOffice│ .───.
┌─────┐ ├──────────┤ ├──────────┤ ( ( )
│═══ ░│───▶│ ┌─┐ ┌┐┌┐ │───▶│ ┌─┐ ┌┐┌┐ │───▶ `─┬─'
└─────┘ │ │░│ └┘└┘ │ │ │░│ └┘└┘ │ │
└─┴─┴──────┘ └─┴─┴──────┘ │

电子邮件的发送过程也是类似的,只不过是电子邮件是从用户电脑的邮件软件,例如Outlook,发送到邮件服务器上,可能经过若干个邮件服务器的中转,最终到达对方邮件服务器上,收件方就可以用软件接收邮件:

1
2
3
4
5
6
7
8
             ┌─────────┐    ┌─────────┐    ┌─────────┐
│░░░░░░░░░│ │░░░░░░░░░│ │░░░░░░░░░│
┌───────┐ ├─────────┤ ├─────────┤ ├─────────┤ ┌───────┐
│░░░░░░░│ │░░░░░░░░░│ │░░░░░░░░░│ │░░░░░░░░░│ │░░░░░░░│
├───────┤ ├─────────┤ ├─────────┤ ├─────────┤ ├───────┤
│ │───▶│O ░░░░░░░│───▶│O ░░░░░░░│───▶│O ░░░░░░░│◀───│ │
└───────┘ └─────────┘ └─────────┘ └─────────┘ └───────┘
MUA MTA MTA MDA MUA

我们把类似Outlook这样的邮件软件称为MUA:Mail User Agent,意思是给用户服务的邮件代理;邮件服务器则称为MTA:Mail Transfer Agent,意思是邮件中转的代理;最终到达的邮件服务器称为MDA:Mail Delivery Agent,意思是邮件到达的代理。电子邮件一旦到达MDA,就不再动了。实际上,电子邮件通常就存储在MDA服务器的硬盘上,然后等收件人通过软件或者登陆浏览器查看邮件。

MTA和MDA这样的服务器软件通常是现成的,我们不关心这些服务器内部是如何运行的。要发送邮件,我们关心的是如何编写一个MUA的软件,把邮件发送到MTA上。

MUA到MTA发送邮件的协议就是SMTP协议,它是Simple Mail Transport Protocol的缩写,使用标准端口25,也可以使用加密端口465587

SMTP协议是一个建立在TCP之上的协议,任何程序发送邮件都必须遵守SMTP协议。使用Java程序发送邮件时,我们无需关心SMTP协议的底层原理,只需要使用JavaMail这个标准API就可以直接发送邮件。

准备SMTP登录信息

假设我们准备使用自己的邮件地址me@example.com给小明发送邮件,已知小明的邮件地址是xiaoming@somewhere.com,发送邮件前,我们首先要确定作为MTA的邮件服务器地址和端口号。邮件服务器地址通常是smtp.example.com,端口号由邮件服务商确定使用25、465还是587。以下是一些常用邮件服务商的SMTP信息:

  • QQ邮箱:SMTP服务器是smtp.qq.com,端口是465/587;
  • 163邮箱:SMTP服务器是smtp.163.com,端口是465;
  • Gmail邮箱:SMTP服务器是smtp.gmail.com,端口是465/587。

有了SMTP服务器的域名和端口号,我们还需要SMTP服务器的登录信息,通常是使用自己的邮件地址作为用户名,登录口令是用户口令或者一个独立设置的SMTP口令。

我们来看看如何使用JavaMail发送邮件。

首先,我们需要创建一个Maven工程,并把JavaMail相关的两个依赖加入进来:

  • jakarta.mail:javax.mail-api:2.0.1
  • com.sun.mail:jakarta.mail:2.0.1

这两个包一个是接口定义,一个是具体实现。如果使用早期的1.x版本,则需注意引入的包名有所不同:

  • javax.mail:javax.mail-api:1.6.2
  • com.sun.mail:javax.mail:1.6.2

并且代码引用的jakarta.mail需替换为javax.mail

然后,我们通过JavaMail API连接到SMTP服务器上:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 服务器地址:
String smtp = "smtp.office365.com";
// 登录用户名:
String username = "jxsmtp101@outlook.com";
// 登录口令:
String password = "********";
// 连接到SMTP服务器587端口:
Properties props = new Properties();
props.put("mail.smtp.host", smtp); // SMTP主机名
props.put("mail.smtp.port", "587"); // 主机端口号
props.put("mail.smtp.auth", "true"); // 是否需要用户认证
props.put("mail.smtp.starttls.enable", "true"); // 启用TLS加密
// 获取Session实例:
Session session = Session.getInstance(props, new Authenticator() {
protected PasswordAuthentication getPasswordAuthentication() {
return new PasswordAuthentication(username, password);
}
});
// 设置debug模式便于调试:
session.setDebug(true);

以587端口为例,连接SMTP服务器时,需要准备一个Properties对象,填入相关信息。最后获取Session实例时,如果服务器需要认证,还需要传入一个Authenticator对象,并返回指定的用户名和口令。

当我们获取到Session实例后,打开调试模式可以看到SMTP通信的详细内容,便于调试。

发送邮件

发送邮件时,我们需要构造一个Message对象,然后调用Transport.send(Message)即可完成发送:

1
2
3
4
5
6
7
8
9
10
11
MimeMessage message = new MimeMessage(session);
// 设置发送方地址:
message.setFrom(new InternetAddress("me@example.com"));
// 设置接收方地址:
message.setRecipient(Message.RecipientType.TO, new InternetAddress("xiaoming@somewhere.com"));
// 设置邮件主题:
message.setSubject("Hello", "UTF-8");
// 设置邮件正文:
message.setText("Hi Xiaoming...", "UTF-8");
// 发送:
Transport.send(message);

绝大多数邮件服务器要求发送方地址和登录用户名必须一致,否则发送将失败。

填入真实的地址,运行上述代码,我们可以在控制台看到JavaMail打印的调试信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
这是JavaMail打印的调试信息:
DEBUG: setDebug: JavaMail version 1.6.2
DEBUG: getProvider() returning javax.mail.Provider[TRANSPORT,smtp,com.sun.mail.smtp.SMTPTransport,Oracle]
DEBUG SMTP: need username and password for authentication
DEBUG SMTP: protocolConnect returning false, host=smtp.office365.com, ...
DEBUG SMTP: useEhlo true, useAuth true
开始尝试连接smtp.office365.com:
DEBUG SMTP: trying to connect to host "smtp.office365.com", port 587, ...
DEBUG SMTP: connected to host "smtp.office365.com", port: 587
发送命令EHLO:
EHLO localhost
SMTP服务器响应250:
250-SG3P274CA0024.outlook.office365.com Hello
250-SIZE 157286400
...
DEBUG SMTP: Found extension "SIZE", arg "157286400"
发送命令STARTTLS:
STARTTLS
SMTP服务器响应220:
220 2.0.0 SMTP server ready
EHLO localhost
250-SG3P274CA0024.outlook.office365.com Hello [111.196.164.63]
250-SIZE 157286400
250-PIPELINING
250-...
DEBUG SMTP: Found extension "SIZE", arg "157286400"
...
尝试登录:
DEBUG SMTP: protocolConnect login, host=smtp.office365.com, user=********, password=********
DEBUG SMTP: Attempt to authenticate using mechanisms: LOGIN PLAIN DIGEST-MD5 NTLM XOAUTH2
DEBUG SMTP: Using mechanism LOGIN
DEBUG SMTP: AUTH LOGIN command trace suppressed
登录成功:
DEBUG SMTP: AUTH LOGIN succeeded
DEBUG SMTP: use8bit false
开发发送邮件,设置FROM:
MAIL FROM:<********@outlook.com>
250 2.1.0 Sender OK
设置TO:
RCPT TO:<********@sina.com>
250 2.1.5 Recipient OK
发送邮件数据:
DATA
服务器响应354:
354 Start mail input; end with <CRLF>.<CRLF>
真正的邮件数据:
Date: Mon, 2 Dec 2019 09:37:52 +0800 (CST)
From: ********@outlook.com
To: ********001@sina.com
Message-ID: <1617791695.0.1575250672483@localhost>
邮件主题是编码后的文本:
Subject: =?UTF-8?Q?JavaMail=E9=82=AE=E4=BB=B6?=
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: base64

邮件正文是Base64编码的文本:
SGVsbG8sIOi/meaYr+S4gOWwgeadpeiHqmphdmFtYWls55qE6YKu5Lu277yB
.
邮件数据发送完成后,以\r\n.\r\n结束,服务器响应250表示发送成功:
250 2.0.0 OK <HK0PR03MB4961.apcprd03.prod.outlook.com> [Hostname=HK0PR03MB4961.apcprd03.prod.outlook.com]
DEBUG SMTP: message successfully delivered to mail server
发送QUIT命令:
QUIT
服务器响应221结束TCP连接:
221 2.0.0 Service closing transmission channel

从上面的调试信息可以看出,SMTP协议是一个请求-响应协议,客户端总是发送命令,然后等待服务器响应。服务器响应总是以数字开头,后面的信息才是用于调试的文本。这些响应码已经被定义在SMTP协议中了,查看具体的响应码就可以知道出错原因。

如果一切顺利,对方将收到一封文本格式的电子邮件:

mail-text

发送HTML邮件

发送HTML邮件和文本邮件是类似的,只需要把:

1
message.setText(body, "UTF-8");

改为:

1
message.setText(body, "UTF-8", "html");

传入的body是类似<h1>Hello</h1><p>Hi, xxx</p>这样的HTML字符串即可。

HTML邮件可以在邮件客户端直接显示为网页格式:

mail-html

发送附件

要在电子邮件中携带附件,我们就不能直接调用message.setText()方法,而是要构造一个Multipart对象:

1
2
3
4
5
6
7
8
9
10
11
12
Multipart multipart = new MimeMultipart();
// 添加text:
BodyPart textpart = new MimeBodyPart();
textpart.setContent(body, "text/html;charset=utf-8");
multipart.addBodyPart(textpart);
// 添加image:
BodyPart imagepart = new MimeBodyPart();
imagepart.setFileName(fileName);
imagepart.setDataHandler(new DataHandler(new ByteArrayDataSource(input, "application/octet-stream")));
multipart.addBodyPart(imagepart);
// 设置邮件内容为multipart:
message.setContent(multipart);

一个Multipart对象可以添加若干个BodyPart,其中第一个BodyPart是文本,即邮件正文,后面的BodyPart是附件。BodyPart依靠setContent()决定添加的内容,如果添加文本,用setContent("...", "text/plain;charset=utf-8")添加纯文本,或者用setContent("...", "text/html;charset=utf-8")添加HTML文本。如果添加附件,需要设置文件名(不一定和真实文件名一致),并且添加一个DataHandler(),传入文件的MIME类型。二进制文件可以用application/octet-stream,Word文档则是application/msword

最后,通过setContent()Multipart添加到Message中,即可发送。

带附件的邮件在客户端会被提示下载:

mail-attachment

发送内嵌图片的HTML邮件

有些童鞋可能注意到,HTML邮件中可以内嵌图片,这是怎么做到的?

如果给一个<img src="http://example.com/test.jpg">,这样的外部图片链接通常会被邮件客户端过滤,并提示用户显示图片并不安全。只有内嵌的图片才能正常在邮件中显示。

内嵌图片实际上也是一个附件,即邮件本身也是Multipart,但需要做一点额外的处理:

1
2
3
4
5
6
7
8
9
10
11
12
Multipart multipart = new MimeMultipart();
// 添加text:
BodyPart textpart = new MimeBodyPart();
textpart.setContent("<h1>Hello</h1><p><img src=\"cid:img01\"></p>", "text/html;charset=utf-8");
multipart.addBodyPart(textpart);
// 添加image:
BodyPart imagepart = new MimeBodyPart();
imagepart.setFileName(fileName);
imagepart.setDataHandler(new DataHandler(new ByteArrayDataSource(input, "image/jpeg")));
// 与HTML的<img src="cid:img01">关联:
imagepart.setHeader("Content-ID", "<img01>");
multipart.addBodyPart(imagepart);

在HTML邮件中引用图片时,需要设定一个ID,用类似<img src=\"cid:img01\">引用,然后,在添加图片作为BodyPart时,除了要正确设置MIME类型(根据图片类型使用image/jpegimage/png),还需要设置一个Header:

1
imagepart.setHeader("Content-ID", "<img01>");

这个ID和HTML中引用的ID对应起来,邮件客户端就可以正常显示内嵌图片:

mail-image

常见问题

如果用户名或口令错误,会导致535登录失败:

1
2
DEBUG SMTP: AUTH LOGIN failed
Exception in thread "main" javax.mail.AuthenticationFailedException: 535 5.7.3 Authentication unsuccessful [HK0PR03CA0105.apcprd03.prod.outlook.com]

如果登录用户和发件人不一致,会导致554拒绝发送错误:

1
2
DEBUG SMTP: MessagingException while sending, THROW: 
com.sun.mail.smtp.SMTPSendFailedException: 554 5.2.0 STOREDRV.Submission.Exception:SendAsDeniedException.MapiExceptionSendAsDenied;

有些时候,如果邮件主题和正文过于简单,会导致554被识别为垃圾邮件的错误:

1
2
DEBUG SMTP: MessagingException while sending, THROW: 
com.sun.mail.smtp.SMTPSendFailedException: 554 DT:SPM

总之,出错时,需要查看DEBUG信息,找到服务器返回的错误码和描述信息来定位错误原因。

练习

使用SMTP发送邮件。

下载练习

小结

使用JavaMail API发送邮件本质上是一个MUA软件通过SMTP协议发送邮件至MTA服务器;

打开调试模式可以看到详细的SMTP交互信息;

某些邮件服务商需要开启SMTP,并需要独立的SMTP登录密码。

发送Email的过程我们在上一节已经讲过了,客户端总是通过SMTP协议把邮件发送给MTA。

接收Email则相反,因为邮件最终到达收件人的MDA服务器,所以,接收邮件是收件人用自己的客户端把邮件从MDA服务器上抓取到本地的过程。

接收邮件使用最广泛的协议是POP3:Post Office Protocol version 3,它也是一个建立在TCP连接之上的协议。POP3服务器的标准端口是110,如果整个会话需要加密,那么使用加密端口995

另一种接收邮件的协议是IMAP:Internet Mail Access Protocol,它使用标准端口143和加密端口993。IMAP和POP3的主要区别是,IMAP协议在本地的所有操作都会自动同步到服务器上,并且,IMAP可以允许用户在邮件服务器的收件箱中创建文件夹。

JavaMail也提供了IMAP协议的支持。因为POP3和IMAP的使用方式非常类似,这里我们只介绍POP3的用法。

使用POP3收取Email时,我们无需关心POP3协议底层,因为JavaMail提供了高层接口。首先需要连接到Store对象:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
// 准备登录信息:
String host = "pop3.example.com";
int port = 995;
String username = "bob@example.com";
String password = "password";

Properties props = new Properties();
props.setProperty("mail.store.protocol", "pop3"); // 协议名称
props.setProperty("mail.pop3.host", host);// POP3主机名
props.setProperty("mail.pop3.port", String.valueOf(port)); // 端口号
// 启动SSL:
props.put("mail.smtp.socketFactory.class", "javax.net.ssl.SSLSocketFactory");
props.put("mail.smtp.socketFactory.port", String.valueOf(port));

// 连接到Store:
URLName url = new URLName("pop3", host, post, "", username, password);
Session session = Session.getInstance(props, null);
session.setDebug(true); // 显示调试信息
Store store = new POP3SSLStore(session, url);
store.connect();

一个Store对象表示整个邮箱的存储,要收取邮件,我们需要通过Store访问指定的Folder(文件夹),通常是INBOX表示收件箱:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// 获取收件箱:
Folder folder = store.getFolder("INBOX");
// 以读写方式打开:
folder.open(Folder.READ_WRITE);
// 打印邮件总数/新邮件数量/未读数量/已删除数量:
System.out.println("Total messages: " + folder.getMessageCount());
System.out.println("New messages: " + folder.getNewMessageCount());
System.out.println("Unread messages: " + folder.getUnreadMessageCount());
System.out.println("Deleted messages: " + folder.getDeletedMessageCount());
// 获取每一封邮件:
Message[] messages = folder.getMessages();
for (Message message : messages) {
// 打印每一封邮件:
printMessage((MimeMessage) message);
}

当我们获取到一个Message对象时,可以强制转型为MimeMessage,然后打印出邮件主题、发件人、收件人等信息:

1
2
3
4
5
6
7
8
9
10
11
12
void printMessage(MimeMessage msg) throws IOException, MessagingException {
// 邮件主题:
System.out.println("Subject: " + MimeUtility.decodeText(msg.getSubject()));
// 发件人:
Address[] froms = msg.getFrom();
InternetAddress address = (InternetAddress) froms[0];
String personal = address.getPersonal();
String from = personal == null ? address.getAddress() : (MimeUtility.decodeText(personal) + " <" + address.getAddress() + ">");
System.out.println("From: " + from);
// 继续打印收件人:
...
}

比较麻烦的是获取邮件的正文。一个MimeMessage对象也是一个Part对象,它可能只包含一个文本,也可能是一个Multipart对象,即由几个Part构成,因此,需要递归地解析出完整的正文:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
String getBody(Part part) throws MessagingException, IOException {
if (part.isMimeType("text/*")) {
// Part是文本:
return part.getContent().toString();
}
if (part.isMimeType("multipart/*")) {
// Part是一个Multipart对象:
Multipart multipart = (Multipart) part.getContent();
// 循环解析每个子Part:
for (int i = 0; i < multipart.getCount(); i++) {
BodyPart bodyPart = multipart.getBodyPart(i);
String body = getBody(bodyPart);
if (!body.isEmpty()) {
return body;
}
}
}
return "";
}

最后记得关闭FolderStore

1
2
folder.close(true); // 传入true表示删除操作会同步到服务器上(即删除服务器收件箱的邮件)
store.close();

练习

使用POP3接收邮件。

下载练习

小结

使用Java接收Email时,可以用POP3协议或IMAP协议。

使用POP3协议时,需要用Maven引入JavaMail依赖,并确定POP3服务器的域名/端口/是否使用SSL等,然后,调用相关API接收Email。

设置debug模式可以查看通信详细内容,便于排查错误。

什么是HTTP?HTTP就是目前使用最广泛的Web应用程序使用的基础协议,例如,浏览器访问网站,手机App访问后台服务器,都是通过HTTP协议实现的。

HTTP是HyperText Transfer Protocol的缩写,翻译为超文本传输协议,它是基于TCP协议之上的一种请求-响应协议。

我们来看一下浏览器请求访问某个网站时发送的HTTP请求-响应。当浏览器希望访问某个网站时,浏览器和网站服务器之间首先建立TCP连接,且服务器总是使用80端口和加密端口443,然后,浏览器向服务器发送一个HTTP请求,服务器收到后,返回一个HTTP响应,并且在响应中包含了HTML的网页内容,这样,浏览器解析HTML后就可以给用户显示网页了。一个完整的HTTP请求-响应如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
            GET / HTTP/1.1
Host: www.sina.com.cn
User-Agent: Mozilla/5 MSIE
Accept: */* ┌────────┐
┌─────────┐ Accept-Language: zh-CN,en │░░░░░░░░│
│O ░░░░░░░│───────────────────────────▶├────────┤
├─────────┤◀───────────────────────────│░░░░░░░░│
│ │ HTTP/1.1 200 OK ├────────┤
│ │ Content-Type: text/html │░░░░░░░░│
└─────────┘ Content-Length: 133251 └────────┘
Browser <!DOCTYPE html> Server
<html><body>
<h1>Hello</h1>
...

HTTP请求的格式是固定的,它由HTTP Header和HTTP Body两部分构成。第一行总是请求方法 路径 HTTP版本,例如,GET / HTTP/1.1表示使用GET请求,路径是/,版本是HTTP/1.1

后续的每一行都是固定的Header: Value格式,我们称为HTTP Header,服务器依靠某些特定的Header来识别客户端请求,例如:

  • Host:表示请求的域名,因为一台服务器上可能有多个网站,因此有必要依靠Host来识别请求是发给哪个网站的;
  • User-Agent:表示客户端自身标识信息,不同的浏览器有不同的标识,服务器依靠User-Agent判断客户端类型是IE还是Chrome,是Firefox还是一个Python爬虫;
  • Accept:表示客户端能处理的HTTP响应格式,*/*表示任意格式,text/*表示任意文本,image/png表示PNG格式的图片;
  • Accept-Language:表示客户端接收的语言,多种语言按优先级排序,服务器依靠该字段给用户返回特定语言的网页版本。

如果是GET请求,那么该HTTP请求只有HTTP Header,没有HTTP Body。如果是POST请求,那么该HTTP请求带有Body,以一个空行分隔。一个典型的带Body的HTTP请求如下:

1
2
3
4
5
6
POST /login HTTP/1.1
Host: www.example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 30

username=hello&password=123456

POST请求通常要设置Content-Type表示Body的类型,Content-Length表示Body的长度,这样服务器就可以根据请求的Header和Body做出正确的响应。

此外,GET请求的参数必须附加在URL上,并以URLEncode方式编码,例如:http://www.example.com/?a=1&b=K%26R,参数分别是a=1b=K&R。因为URL的长度限制,GET请求的参数不能太多,而POST请求的参数就没有长度限制,因为POST请求的参数必须放到Body中。并且,POST请求的参数不一定是URL编码,可以按任意格式编码,只需要在Content-Type中正确设置即可。常见的发送JSON的POST请求如下:

1
2
3
4
5
POST /login HTTP/1.1
Content-Type: application/json
Content-Length: 38

{"username":"bob","password":"123456"}

HTTP响应也是由Header和Body两部分组成,一个典型的HTTP响应如下:

1
2
3
4
5
6
7
8
HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 133251

<!DOCTYPE html>
<html><body>
<h1>Hello</h1>
</body></html>

响应的第一行总是HTTP版本 响应代码 响应说明,例如,HTTP/1.1 200 OK表示版本是HTTP/1.1,响应代码是200,响应说明是OK。客户端只依赖响应代码判断HTTP响应是否成功。HTTP有固定的响应代码:

  • 1xx:表示一个提示性响应,例如101表示将切换协议,常见于WebSocket连接;
  • 2xx:表示一个成功的响应,例如200表示成功,206表示只发送了部分内容;
  • 3xx:表示一个重定向的响应,例如301表示永久重定向,303表示客户端应该按指定路径重新发送请求;
  • 4xx:表示一个因为客户端问题导致的错误响应,例如400表示因为Content-Type等各种原因导致的无效请求,404表示指定的路径不存在;
  • 5xx:表示一个因为服务器问题导致的错误响应,例如500表示服务器内部故障,503表示服务器暂时无法响应。

当浏览器收到第一个HTTP响应后,它解析HTML后,又会发送一系列HTTP请求,例如,GET /logo.jpg HTTP/1.1请求一个图片,服务器响应图片请求后,会直接把二进制内容的图片发送给浏览器:

1
2
3
4
5
HTTP/1.1 200 OK
Content-Type: image/jpeg
Content-Length: 18391

????JFIFHH??XExifMM?i&??X?...(二进制的JPEG图片)

因此,服务器总是被动地接收客户端的一个HTTP请求,然后响应它。客户端则根据需要发送若干个HTTP请求。

对于最早期的HTTP/1.0协议,每次发送一个HTTP请求,客户端都需要先创建一个新的TCP连接,然后,收到服务器响应后,关闭这个TCP连接。由于建立TCP连接就比较耗时,因此,为了提高效率,HTTP/1.1协议允许在一个TCP连接中反复发送-响应,这样就能大大提高效率:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
                       ┌─────────┐
┌─────────┐ │░░░░░░░░░│
│O ░░░░░░░│ ├─────────┤
├─────────┤ │░░░░░░░░░│
│ │ ├─────────┤
│ │ │░░░░░░░░░│
└─────────┘ └─────────┘
│ request 1 │
│─────────────────────▶│
│ response 1 │
│◀─────────────────────│
│ request 2 │
│─────────────────────▶│
│ response 2 │
│◀─────────────────────│
│ request 3 │
│─────────────────────▶│
│ response 3 │
│◀─────────────────────│
▼ ▼

因为HTTP协议是一个请求-响应协议,客户端在发送了一个HTTP请求后,必须等待服务器响应后,才能发送下一个请求,这样一来,如果某个响应太慢,它就会堵住后面的请求。

所以,为了进一步提速,HTTP/2.0允许客户端在没有收到响应的时候,发送多个HTTP请求,服务器返回响应的时候,不一定按顺序返回,只要双方能识别出哪个响应对应哪个请求,就可以做到并行发送和接收:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
                       ┌─────────┐
┌─────────┐ │░░░░░░░░░│
│O ░░░░░░░│ ├─────────┤
├─────────┤ │░░░░░░░░░│
│ │ ├─────────┤
│ │ │░░░░░░░░░│
└─────────┘ └─────────┘
│ request 1 │
│─────────────────────▶│
│ request 2 │
│─────────────────────▶│
│ response 1 │
│◀─────────────────────│
│ request 3 │
│─────────────────────▶│
│ response 3 │
│◀─────────────────────│
│ response 2 │
│◀─────────────────────│
▼ ▼

可见,HTTP/2.0进一步提高了效率。

HTTP编程

既然HTTP涉及到客户端和服务器端,和TCP类似,我们也需要针对客户端编程和针对服务器端编程。

本节我们不讨论服务器端的HTTP编程,因为服务器端的HTTP编程本质上就是编写Web服务器,这是一个非常复杂的体系,也是JavaEE开发的核心内容,我们在后面的章节再仔细研究。

本节我们只讨论作为客户端的HTTP编程。

因为浏览器也是一种HTTP客户端,所以,客户端的HTTP编程,它的行为本质上和浏览器是一样的,即发送一个HTTP请求,接收服务器响应后,获得响应内容。只不过浏览器进一步把响应内容解析后渲染并展示给了用户,而我们使用Java进行HTTP客户端编程仅限于获得响应内容。

我们来看一下Java如何使用HTTP客户端编程。

Java标准库提供了基于HTTP的包,但是要注意,早期的JDK版本是通过HttpURLConnection访问HTTP,典型代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
URL url = new URL("http://www.example.com/path/to/target?a=1&b=2");
HttpURLConnection conn = (HttpURLConnection) url.openConnection();
conn.setRequestMethod("GET");
conn.setUseCaches(false);
conn.setConnectTimeout(5000); // 请求超时5秒
// 设置HTTP头:
conn.setRequestProperty("Accept", "*/*");
conn.setRequestProperty("User-Agent", "Mozilla/5.0 (compatible; MSIE 11; Windows NT 5.1)");
// 连接并发送HTTP请求:
conn.connect();
// 判断HTTP响应是否200:
if (conn.getResponseCode() != 200) {
throw new RuntimeException("bad response");
}
// 获取所有响应Header:
Map<String, List<String>> map = conn.getHeaderFields();
for (String key : map.keySet()) {
System.out.println(key + ": " + map.get(key));
}
// 获取响应内容:
InputStream input = conn.getInputStream();
...

上述代码编写比较繁琐,并且需要手动处理InputStream,所以用起来很麻烦。

从Java 11开始,引入了新的HttpClient,它使用链式调用的API,能大大简化HTTP的处理。

我们来看一下如何使用新版的HttpClient。首先需要创建一个全局HttpClient实例,因为HttpClient内部使用线程池优化多个HTTP连接,可以复用:

1
static HttpClient httpClient = HttpClient.newBuilder().build();

使用GET请求获取文本内容代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import java.net.URI;
import java.net.http.*;
import java.net.http.HttpClient.Version;
import java.time.Duration;
import java.util.*;

public class Main {
// 全局HttpClient:
static HttpClient httpClient = HttpClient.newBuilder().build();

public static void main(String[] args) throws Exception {
String url = "https://www.sina.com.cn/";
HttpRequest request = HttpRequest.newBuilder(new URI(url))
// 设置Header:
.header("User-Agent", "Java HttpClient").header("Accept", "*/*")
// 设置超时:
.timeout(Duration.ofSeconds(5))
// 设置版本:
.version(Version.HTTP_2).build();
HttpResponse<String> response = httpClient.send(request, HttpResponse.BodyHandlers.ofString());
// HTTP允许重复的Header,因此一个Header可对应多个Value:
Map<String, List<String>> headers = response.headers().map();
for (String header : headers.keySet()) {
System.out.println(header + ": " + headers.get(header).get(0));
}
System.out.println(response.body().substring(0, 1024) + "...");
}
}

如果我们要获取图片这样的二进制内容,只需要把HttpResponse.BodyHandlers.ofString()换成HttpResponse.BodyHandlers.ofByteArray(),就可以获得一个HttpResponse<byte[]>对象。如果响应的内容很大,不希望一次性全部加载到内存,可以使用HttpResponse.BodyHandlers.ofInputStream()获取一个InputStream流。

要使用POST请求,我们要准备好发送的Body数据并正确设置Content-Type

1
2
3
4
5
6
7
8
9
10
11
12
13
14
String url = "http://www.example.com/login";
String body = "username=bob&password=123456";
HttpRequest request = HttpRequest.newBuilder(new URI(url))
// 设置Header:
.header("Accept", "*/*")
.header("Content-Type", "application/x-www-form-urlencoded")
// 设置超时:
.timeout(Duration.ofSeconds(5))
// 设置版本:
.version(Version.HTTP_2)
// 使用POST并设置Body:
.POST(BodyPublishers.ofString(body, StandardCharsets.UTF_8)).build();
HttpResponse<String> response = httpClient.send(request, HttpResponse.BodyHandlers.ofString());
String s = response.body();

可见发送POST数据也十分简单。

练习

使用HttpClient。

下载练习

小结

Java提供了HttpClient作为新的HTTP客户端编程接口用于取代老的HttpURLConnection接口;

HttpClient使用链式调用并通过内置的BodyPublishersBodyHandlers来更方便地处理数据。

Java的RMI远程调用是指,一个JVM中的代码可以通过网络实现远程调用另一个JVM的某个方法。RMI是Remote Method Invocation的缩写。

提供服务的一方我们称之为服务器,而实现远程调用的一方我们称之为客户端。

我们先来实现一个最简单的RMI:服务器会提供一个WorldClock服务,允许客户端获取指定时区的时间,即允许客户端调用下面的方法:

1
LocalDateTime getLocalDateTime(String zoneId);

要实现RMI,服务器和客户端必须共享同一个接口。我们定义一个WorldClock接口,代码如下:

1
2
3
public interface WorldClock extends Remote {
LocalDateTime getLocalDateTime(String zoneId) throws RemoteException;
}

Java的RMI规定此接口必须派生自java.rmi.Remote,并在每个方法声明抛出RemoteException

下一步是编写服务器的实现类,因为客户端请求的调用方法getLocalDateTime()最终会通过这个实现类返回结果。实现类WorldClockService代码如下:

1
2
3
4
5
6
public class WorldClockService implements WorldClock {
@Override
public LocalDateTime getLocalDateTime(String zoneId) throws RemoteException {
return LocalDateTime.now(ZoneId.of(zoneId)).withNano(0);
}
}

现在,服务器端的服务相关代码就编写完毕。我们需要通过Java RMI提供的一系列底层支持接口,把上面编写的服务以RMI的形式暴露在网络上,客户端才能调用:

1
2
3
4
5
6
7
8
9
10
11
12
13
public class Server {
public static void main(String[] args) throws RemoteException {
System.out.println("create World clock remote service...");
// 实例化一个WorldClock:
WorldClock worldClock = new WorldClockService();
// 将此服务转换为远程服务接口:
WorldClock skeleton = (WorldClock) UnicastRemoteObject.exportObject(worldClock, 0);
// 将RMI服务注册到1099端口:
Registry registry = LocateRegistry.createRegistry(1099);
// 注册此服务,服务名为"WorldClock":
registry.rebind("WorldClock", skeleton);
}
}

上述代码主要目的是通过RMI提供的相关类,将我们自己的WorldClock实例注册到RMI服务上。RMI的默认端口是1099,最后一步注册服务时通过rebind()指定服务名称为"WorldClock"

下一步我们就可以编写客户端代码。RMI要求服务器和客户端共享同一个接口,因此我们要把WorldClock.java这个接口文件复制到客户端,然后在客户端实现RMI调用:

1
2
3
4
5
6
7
8
9
10
11
12
public class Client {
public static void main(String[] args) throws RemoteException, NotBoundException {
// 连接到服务器localhost,端口1099:
Registry registry = LocateRegistry.getRegistry("localhost", 1099);
// 查找名称为"WorldClock"的服务并强制转型为WorldClock接口:
WorldClock worldClock = (WorldClock) registry.lookup("WorldClock");
// 正常调用接口方法:
LocalDateTime now = worldClock.getLocalDateTime("Asia/Shanghai");
// 打印调用结果:
System.out.println(now);
}
}

先运行服务器,再运行客户端。从运行结果可知,因为客户端只有接口,并没有实现类,因此,客户端获得的接口方法返回值实际上是通过网络从服务器端获取的。整个过程实际上非常简单,对客户端来说,客户端持有的WorldClock接口实际上对应了一个“实现类”,它是由Registry内部动态生成的,并负责把方法调用通过网络传递到服务器端。而服务器端接收网络调用的服务并不是我们自己编写的WorldClockService,而是Registry自动生成的代码。我们把客户端的“实现类”称为stub,而服务器端的网络服务类称为skeleton,它会真正调用服务器端的WorldClockService,获取结果,然后把结果通过网络传递给客户端。整个过程由RMI底层负责实现序列化和反序列化:

1
2
3
4
5
6
7
8
9
10
11
┌ ─ ─ ─ ─ ─ ─ ─ ─ ┐         ┌ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┐
┌─────────────┐ ┌────────────┐
│ │ Service │ │ │ │ Service │ │
└─────────────┘ └────────────┘
│ ▲ │ │ ▲ │
│ │
│ │ │ │ │ │
┌─────────────┐ Network ┌───────────────┐ ┌────────────┐
│ │ Client Stub ├─┼─────────┼─▶│Server Skeleton│──▶│Service Impl│ │
└─────────────┘ └───────────────┘ └────────────┘
└ ─ ─ ─ ─ ─ ─ ─ ─ ┘ └ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┘

Java的RMI严重依赖序列化和反序列化,而这种情况下可能会造成严重的安全漏洞,因为Java的序列化和反序列化不但涉及到数据,还涉及到二进制的字节码,即使使用白名单机制也很难保证100%排除恶意构造的字节码。因此,使用RMI时,双方必须是内网互相信任的机器,不要把1099端口暴露在公网上作为对外服务。

此外,Java的RMI调用机制决定了双方必须是Java程序,其他语言很难调用Java的RMI。如果要使用不同语言进行RPC调用,可以选择更通用的协议,例如gRPC

练习

使用RMI实现远程调用。

下载练习

小结

Java提供了RMI实现远程方法调用:

RMI通过自动生成stub和skeleton实现网络调用,客户端只需要查找服务并获得接口实例,服务器端只需要编写实现类并注册为服务;

RMI的序列化和反序列化可能会造成安全漏洞,因此调用双方必须是内网互相信任的机器,不要把1099端口暴露在公网上作为对外服务。

留言與分享

JAVA-Maven基础

分類 编程语言, Java

在了解Maven之前,我们先来看看一个Java项目需要的东西。首先,我们需要确定引入哪些依赖包。例如,如果我们需要用到commons logging,我们就必须把commons logging的jar包放入classpath。如果我们还需要log4j,就需要把log4j相关的jar包都放到classpath中。这些就是依赖包的管理。

其次,我们要确定项目的目录结构。例如,src目录存放Java源码,resources目录存放配置文件,bin目录存放编译生成的.class文件。

此外,我们还需要配置环境,例如JDK的版本,编译打包的流程,当前代码的版本号。

最后,除了使用Eclipse这样的IDE进行编译外,我们还必须能通过命令行工具进行编译,才能够让项目在一个独立的服务器上编译、测试、部署。

这些工作难度不大,但是非常琐碎且耗时。如果每一个项目都自己搞一套配置,肯定会一团糟。我们需要的是一个标准化的Java项目管理和构建工具。

Maven就是是专门为Java项目打造的管理和构建工具,它的主要功能有:

  • 提供了一套标准化的项目结构;
  • 提供了一套标准化的构建流程(编译,测试,打包,发布……);
  • 提供了一套依赖管理机制。

Maven项目结构

一个使用Maven管理的普通的Java项目,它的目录结构默认如下:

1
2
3
4
5
6
7
8
9
10
a-maven-project
├── pom.xml
├── src
│   ├── main
│   │   ├── java
│   │   └── resources
│   └── test
│   ├── java
│   └── resources
└── target

项目的根目录a-maven-project是项目名,它有一个项目描述文件pom.xml,存放Java源码的目录是src/main/java,存放资源文件的目录是src/main/resources,存放测试源码的目录是src/test/java,存放测试资源的目录是src/test/resources,最后,所有编译、打包生成的文件都放在target目录里。这些就是一个Maven项目的标准目录结构。

所有的目录结构都是约定好的标准结构,我们千万不要随意修改目录结构。使用标准结构不需要做任何配置,Maven就可以正常使用。

我们再来看最关键的一个项目描述文件pom.xml,它的内容长得像下面:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
<project ...>
<modelVersion>4.0.0</modelVersion>
<groupId>com.itranswarp.learnjava</groupId>
<artifactId>hello</artifactId>
<version>1.0</version>
<packaging>jar</packaging>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<maven.compiler.release>17</maven.compiler.release>
</properties>
<dependencies>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>2.0.16</version>
</dependency>
</dependencies>
</project>

其中,groupId类似于Java的包名,通常是公司或组织名称,artifactId类似于Java的类名,通常是项目名称,再加上version,一个Maven工程就是由groupIdartifactIdversion作为唯一标识。

我们在引用其他第三方库的时候,也是通过这3个变量确定。例如,依赖org.slfj4:slf4j-simple:2.0.16

1
2
3
4
5
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>2.0.16</version>
</dependency>

使用<dependency>声明一个依赖后,Maven就会自动下载这个依赖包并把它放到classpath中。

另外,注意到<properties>定义了一些属性,常用的属性有:

  • project.build.sourceEncoding:表示项目源码的字符编码,通常应设定为UTF-8
  • maven.compiler.release:表示使用的JDK版本,例如21
  • maven.compiler.source:表示Java编译器读取的源码版本;
  • maven.compiler.target:表示Java编译器编译的Class版本。

从Java 9开始,推荐使用maven.compiler.release属性,保证编译时输入的源码和编译输出版本一致。如果源码和输出版本不同,则应该分别设置maven.compiler.sourcemaven.compiler.target

通过<properties>定义的属性,就可以固定JDK版本,防止同一个项目的不同的开发者各自使用不同版本的JDK。

安装Maven

要安装Maven,可以从Maven官网下载最新的Maven 3.9.x,然后在本地解压,设置几个环境变量:

1
2
M2_HOME=/path/to/maven-3.9.x
PATH=$PATH:$M2_HOME/bin

Windows可以把%M2_HOME%\bin添加到系统Path变量中。

然后,打开命令行窗口,输入mvn -version,应该看到Maven的版本信息:

1
2
3
4
5
6
7
8
9
10
11
12
13
┌─────────────────────────────────────────────────────────┐
│Windows PowerShell - □ x │
├─────────────────────────────────────────────────────────┤
│Windows PowerShell │
│Copyright (C) Microsoft Corporation. All rights reserved.│
│ │
│PS C:\Users\liaoxuefeng> mvn -version │
│Apache Maven 3.9.x ... │
│Maven home: C:\Users\liaoxuefeng\maven │
│Java version: ... │
│... │
│ │
└─────────────────────────────────────────────────────────┘

如果提示命令未找到,说明系统PATH路径有误,需要修复后再运行。

小结

Maven是一个Java项目的管理和构建工具:

  • Maven使用pom.xml定义项目内容,并使用预设的目录结构;
  • 在Maven中声明一个依赖项可以自动下载并导入classpath;
  • Maven使用groupIdartifactIdversion唯一定位一个依赖。

如果我们的项目依赖第三方的jar包,例如commons logging,那么问题来了:commons logging发布的jar包在哪下载?

如果我们还希望依赖log4j,那么使用log4j需要哪些jar包?

类似的依赖还包括:JUnit,JavaMail,MySQL驱动等等,一个可行的方法是通过搜索引擎搜索到项目的官网,然后手动下载zip包,解压,放入classpath。但是,这个过程非常繁琐。

Maven解决了依赖管理问题。例如,我们的项目依赖abc这个jar包,而abc又依赖xyz这个jar包:

1
2
3
4
5
6
7
8
9
10
11
12
13
┌──────────────┐
│Sample Project│
└──────────────┘


┌──────────────┐
│ abc │
└──────────────┘


┌──────────────┐
│ xyz │
└──────────────┘

当我们声明了abc的依赖时,Maven自动把abcxyz都加入了我们的项目依赖,不需要我们自己去研究abc是否需要依赖xyz

因此,Maven的第一个作用就是解决依赖管理。我们声明了自己的项目需要abc,Maven会自动导入abc的jar包,再判断出abc需要xyz,又会自动导入xyz的jar包,这样,最终我们的项目会依赖abcxyz两个jar包。

我们来看一个复杂依赖示例:

1
2
3
4
5
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>1.4.2.RELEASE</version>
</dependency>

当我们声明一个spring-boot-starter-web依赖时,Maven会自动解析并判断最终需要大概二三十个其他依赖:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
spring-boot-starter-web
spring-boot-starter
spring-boot
sprint-boot-autoconfigure
spring-boot-starter-logging
logback-classic
logback-core
slf4j-api
jcl-over-slf4j
slf4j-api
jul-to-slf4j
slf4j-api
log4j-over-slf4j
slf4j-api
spring-core
snakeyaml
spring-boot-starter-tomcat
tomcat-embed-core
tomcat-embed-el
tomcat-embed-websocket
tomcat-embed-core
jackson-databind
...

如果我们自己去手动管理这些依赖是非常费时费力的,而且出错的概率很大。

依赖关系

Maven定义了几种依赖关系,分别是compiletestruntimeprovided

scope 说明 示例
compile 编译时需要用到该jar包(默认) commons-logging
test 编译Test时需要用到该jar包 junit
runtime 编译时不需要,但运行时需要用到 mysql
provided 编译时需要用到,但运行时由JDK或某个服务器提供 servlet-api

其中,默认的compile是最常用的,Maven会把这种类型的依赖直接放入classpath。

test依赖表示仅在测试时使用,正常运行时并不需要。最常用的test依赖就是JUnit:

1
2
3
4
5
6
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-api</artifactId>
<version>5.3.2</version>
<scope>test</scope>
</dependency>

runtime依赖表示编译时不需要,但运行时需要。最典型的runtime依赖是JDBC驱动,例如MySQL驱动:

1
2
3
4
5
6
<dependency>
<groupId>mysql</groupId>
<artifactId>mysql-connector-java</artifactId>
<version>5.1.48</version>
<scope>runtime</scope>
</dependency>

provided依赖表示编译时需要,但运行时不需要。最典型的provided依赖是Servlet API,编译的时候需要,但是运行时,Servlet服务器内置了相关的jar,所以运行期不需要:

1
2
3
4
5
6
<dependency>
<groupId>jakarta.servlet</groupId>
<artifactId>jakarta.servlet-api</artifactId>
<version>4.0.0</version>
<scope>provided</scope>
</dependency>

最后一个问题是,Maven如何知道从何处下载所需的依赖?也就是相关的jar包?答案是Maven维护了一个中央仓库(repo1.maven.org),所有第三方库将自身的jar以及相关信息上传至中央仓库,Maven就可以从中央仓库把所需依赖下载到本地。

Maven并不会每次都从中央仓库下载jar包。一个jar包一旦被下载过,就会被Maven自动缓存在本地目录(用户主目录的.m2目录),所以,除了第一次编译时因为下载需要时间会比较慢,后续过程因为有本地缓存,并不会重复下载相同的jar包。

唯一ID

对于某个依赖,Maven只需要3个变量即可唯一确定某个jar包:

  • groupId:属于组织的名称,类似Java的包名;
  • artifactId:该jar包自身的名称,类似Java的类名;
  • version:该jar包的版本。

通过上述3个变量,即可唯一确定某个jar包。Maven通过对jar包进行PGP签名确保任何一个jar包一经发布就无法修改。修改已发布jar包的唯一方法是发布一个新版本。

因此,某个jar包一旦被Maven下载过,即可永久地安全缓存在本地。

注:只有以-SNAPSHOT结尾的版本号会被Maven视为开发版本,开发版本每次都会重复下载,这种SNAPSHOT版本只能用于内部私有的Maven repo,公开发布的版本不允许出现SNAPSHOT。

提示

后续我们在表示Maven依赖时,使用简写形式groupId:artifactId:version,例如:org.slf4j:slf4j-api:2.0.4。

Maven镜像

除了可以从Maven的中央仓库下载外,还可以从Maven的镜像仓库下载。如果访问Maven的中央仓库非常慢,我们可以选择一个速度较快的Maven的镜像仓库。Maven镜像仓库定期从中央仓库同步:

1
2
3
4
5
6
7
8
9
           slow    ┌───────────────────┐
┌─────────────▶│Maven Central Repo.│
│ └───────────────────┘
│ │
│ │sync
│ ▼
┌───────┐ fast ┌───────────────────┐
│ User │─────────▶│Maven Mirror Repo. │
└───────┘ └───────────────────┘

中国区用户可以使用阿里云提供的Maven镜像仓库。使用Maven镜像仓库需要一个配置,在用户主目录下进入.m2目录,创建一个settings.xml配置文件,内容如下:

1
2
3
4
5
6
7
8
9
10
11
<settings>
<mirrors>
<mirror>
<id>aliyun</id>
<name>aliyun</name>
<mirrorOf>central</mirrorOf>
<!-- 国内推荐阿里云的Maven镜像 -->
<url>https://maven.aliyun.com/repository/central</url>
</mirror>
</mirrors>
</settings>

配置镜像仓库后,Maven的下载速度就会非常快。

搜索第三方组件

最后一个问题:如果我们要引用一个第三方组件,比如okhttp,如何确切地获得它的groupIdartifactIdversion?方法是通过search.maven.org搜索关键字,找到对应的组件后,直接复制:

maven-info

命令行编译

在命令中,进入到pom.xml所在目录,输入以下命令:

1
$ mvn clean package

如果一切顺利,即可在target目录下获得编译后自动打包的jar。

在IDE中使用Maven

几乎所有的IDE都内置了对Maven的支持。在Eclipse中,可以直接创建或导入Maven项目。如果导入后的Maven项目有错误,可以尝试选择项目后点击右键,选择Maven - Update Project…更新:

update-maven-project

练习

使用Maven编译hello项目。

下载练习

小结

Maven通过解析依赖关系确定项目所需的jar包,常用的4种scope有:compile(默认),testruntimeprovided

Maven从中央仓库下载所需的jar包并缓存在本地;

可以通过镜像仓库加速下载。

构建流程

Maven不但有标准化的项目结构,而且还有一套标准化的构建流程,可以自动化实现编译,打包,发布,等等。

Lifecycle和Phase

使用Maven时,我们首先要了解什么是Maven的生命周期(lifecycle)。

Maven的生命周期由一系列阶段(phase)构成,以内置的生命周期default为例,它包含以下phase:

  • validate
  • initialize
  • generate-sources
  • process-sources
  • generate-resources
  • process-resources
  • compile
  • process-classes
  • generate-test-sources
  • process-test-sources
  • generate-test-resources
  • process-test-resources
  • test-compile
  • process-test-classes
  • test
  • prepare-package
  • package
  • pre-integration-test
  • integration-test
  • post-integration-test
  • verify
  • install
  • deploy

如果我们运行mvn package,Maven就会执行default生命周期,它会从开始一直运行到package这个phase为止:

  • validate
  • initialize
  • prepare-package
  • package

如果我们运行mvn compile,Maven也会执行default生命周期,但这次它只会运行到compile,即以下几个phase:

  • validate
  • initialize
  • process-resources
  • compile

Maven另一个常用的生命周期是clean,它会执行3个phase:

  • pre-clean
  • clean (注意这个clean不是lifecycle而是phase)
  • post-clean

所以,我们使用mvn这个命令时,后面的参数是phase,Maven自动根据生命周期运行到指定的phase。

更复杂的例子是指定多个phase,例如,运行mvn clean package,Maven先执行clean生命周期并运行到clean这个phase,然后执行default生命周期并运行到package这个phase,实际执行的phase如下:

  • pre-clean
  • clean (注意这个clean是phase)
  • validate (开始执行default生命周期的第一个phase)
  • initialize
  • prepare-package
  • package

在实际开发过程中,经常使用的命令有:

mvn clean:清理所有生成的class和jar;

mvn clean compile:先清理,再执行到compile

mvn clean test:先清理,再执行到test,因为执行test前必须执行compile,所以这里不必指定compile

mvn clean package:先清理,再执行到package

大多数phase在执行过程中,因为我们通常没有在pom.xml中配置相关的设置,所以这些phase什么事情都不做。

经常用到的phase其实只有几个:

  • clean:清理
  • compile:编译
  • test:运行测试
  • package:打包

Goal

执行一个phase又会触发一个或多个goal:

执行的Phase 对应执行的Goal
compile compiler:compile
test compiler:testCompile
surefire:test

goal的命名总是abc:xyz这种形式。

看到这里,相信大家对lifecycle、phase和goal已经明白了吧?

meng

其实我们类比一下就明白了:

  • lifecycle相当于Java的package,它包含一个或多个phase;
  • phase相当于Java的class,它包含一个或多个goal;
  • goal相当于class的method,它其实才是真正干活的。

大多数情况,我们只要指定phase,就默认执行这些phase默认绑定的goal,只有少数情况,我们可以直接指定运行一个goal,例如,启动Tomcat服务器:

1
$ mvn tomcat:run

小结

Maven通过lifecycle、phase和goal来提供标准的构建流程。

最常用的构建命令是指定phase,然后让Maven执行到指定的phase:

  • mvn clean
  • mvn clean compile
  • mvn clean test
  • mvn clean package

通常情况,我们总是执行phase默认绑定的goal,因此不必指定goal。

使用插件

我们在前面介绍了Maven的lifecycle,phase和goal:使用Maven构建项目就是执行lifecycle,执行到指定的phase为止。每个phase会执行自己默认的一个或多个goal。goal是最小任务单元。

我们以compile这个phase为例,如果执行:

1
$ mvn compile

Maven将执行compile这个phase,这个phase会调用compiler插件执行关联的compiler:compile这个goal。

实际上,执行每个phase,都是通过某个插件(plugin)来执行的,Maven本身其实并不知道如何执行compile,它只是负责找到对应的compiler插件,然后执行默认的compiler:compile这个goal来完成编译。

所以,使用Maven,实际上就是配置好需要使用的插件,然后通过phase调用它们。

Maven已经内置了一些常用的标准插件:

插件名称 对应执行的phase
clean clean
compiler compile
surefire test
jar package

如果标准插件无法满足需求,我们还可以使用自定义插件。使用自定义插件的时候,需要声明。例如,使用maven-shade-plugin可以创建一个可执行的jar,要使用这个插件,需要在pom.xml中声明它:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
<project>
...
<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-shade-plugin</artifactId>
<version>3.2.1</version>
<executions>
<execution>
<phase>package</phase>
<goals>
<goal>shade</goal>
</goals>
<configuration>
...插件配置...
</configuration>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

自定义插件往往需要一些配置,例如,maven-shade-plugin需要指定Java程序的入口,它的配置是:

1
2
3
4
5
6
7
<configuration>
<transformers>
<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
<mainClass>com.itranswarp.learnjava.Main</mainClass>
</transformer>
</transformers>
</configuration>

注意,Maven自带的标准插件例如compiler是无需声明的,只有引入其它的插件才需要声明。

下面列举了一些常用的插件:

  • maven-shade-plugin:打包所有依赖包并生成可执行jar;
  • cobertura-maven-plugin:生成单元测试覆盖率报告;
  • findbugs-maven-plugin:对Java源码进行静态分析以找出潜在问题。

练习

使用maven-shade-plugin创建可执行jar。

下载练习

小结

Maven通过自定义插件可以执行项目构建时需要的额外功能,使用自定义插件必须在pom.xml中声明插件及配置;

插件会在某个phase被执行时执行;

插件的配置和用法需参考插件的官方文档。



在软件开发中,把一个大项目分拆为多个模块是降低软件复杂度的有效方法:

1
2
3
4
5
6
7
8
9
10
11
                        ┌ ─ ─ ─ ─ ─ ─ ┐
┌─────────┐
│ │Module A │ │
└─────────┘
┌──────────────┐ split │ ┌─────────┐ │
│Single Project│───────▶ │Module B │
└──────────────┘ │ └─────────┘ │
┌─────────┐
│ │Module C │ │
└─────────┘
└ ─ ─ ─ ─ ─ ─ ┘

对于Maven工程来说,原来是一个大项目:

1
2
3
single-project
├── pom.xml
└── src

现在可以分拆成3个模块:

1
2
3
4
5
6
7
8
9
10
multiple-projects
├── module-a
│   ├── pom.xml
│   └── src
├── module-b
│   ├── pom.xml
│   └── src
└── module-c
├── pom.xml
└── src

Maven可以有效地管理多个模块,我们只需要把每个模块当作一个独立的Maven项目,它们有各自独立的pom.xml。例如,模块A的pom.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.itranswarp.learnjava</groupId>
<artifactId>module-a</artifactId>
<version>1.0</version>
<packaging>jar</packaging>

<name>module-a</name>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<java.version>11</java.version>
</properties>

<dependencies>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.28</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<version>5.5.2</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

模块B的pom.xml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.itranswarp.learnjava</groupId>
<artifactId>module-b</artifactId>
<version>1.0</version>
<packaging>jar</packaging>

<name>module-b</name>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<java.version>11</java.version>
</properties>

<dependencies>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.28</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<version>5.5.2</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

可以看出来,模块A和模块B的pom.xml高度相似,因此,我们可以提取出共同部分作为parent

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>com.itranswarp.learnjava</groupId>
<artifactId>parent</artifactId>
<version>1.0</version>
<packaging>pom</packaging>

<name>parent</name>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<java.version>11</java.version>
</properties>

<dependencies>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.28</version>
</dependency>
<dependency>
<groupId>ch.qos.logback</groupId>
<artifactId>logback-classic</artifactId>
<version>1.2.3</version>
<scope>runtime</scope>
</dependency>
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter-engine</artifactId>
<version>5.5.2</version>
<scope>test</scope>
</dependency>
</dependencies>
</project>

注意到parent的<packaging>pom而不是jar,因为parent本身不含任何Java代码。编写parentpom.xml只是为了在各个模块中减少重复的配置。现在我们的整个工程结构如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
multiple-project
├── pom.xml
├── parent
│   └── pom.xml
├── module-a
│   ├── pom.xml
│   └── src
├── module-b
│   ├── pom.xml
│   └── src
└── module-c
├── pom.xml
└── src

这样模块A就可以简化为:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
<groupId>com.itranswarp.learnjava</groupId>
<artifactId>parent</artifactId>
<version>1.0</version>
<relativePath>../parent/pom.xml</relativePath>
</parent>

<artifactId>module-a</artifactId>
<packaging>jar</packaging>
<name>module-a</name>
</project>

模块B、模块C都可以直接从parent继承,大幅简化了pom.xml的编写。

如果模块A依赖模块B,则模块A需要模块B的jar包才能正常编译,我们需要在模块A中引入模块B:

1
2
3
4
5
6
7
8
...
<dependencies>
<dependency>
<groupId>com.itranswarp.learnjava</groupId>
<artifactId>module-b</artifactId>
<version>1.0</version>
</dependency>
</dependencies>

最后,在编译的时候,需要在根目录创建一个pom.xml统一编译:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">

<modelVersion>4.0.0</modelVersion>
<groupId>com.itranswarp.learnjava</groupId>
<artifactId>build</artifactId>
<version>1.0</version>
<packaging>pom</packaging>
<name>build</name>

<modules>
<module>parent</module>
<module>module-a</module>
<module>module-b</module>
<module>module-c</module>
</modules>
</project>

这样,在根目录执行mvn clean package时,Maven根据根目录的pom.xml找到包括parent在内的共4个<module>,一次性全部编译。

中央仓库

其实我们使用的大多数第三方模块都是这个用法,例如,我们使用commons logging、log4j这些第三方模块,就是第三方模块的开发者自己把编译好的jar包发布到Maven的中央仓库中。

私有仓库

私有仓库是指公司内部如果不希望把源码和jar包放到公网上,那么可以搭建私有仓库。私有仓库总是在公司内部使用,它只需要在本地的~/.m2/settings.xml中配置好,使用方式和中央仓位没有任何区别。

本地仓库

本地仓库是指把本地开发的项目“发布”在本地,这样其他项目可以通过本地仓库引用它。但是我们不推荐把自己的模块安装到Maven的本地仓库,因为每次修改某个模块的源码,都需要重新安装,非常容易出现版本不一致的情况。更好的方法是使用模块化编译,在编译的时候,告诉Maven几个模块之间存在依赖关系,需要一块编译,Maven就会自动按依赖顺序编译这些模块。

小结

Maven支持模块化管理,可以把一个大项目拆成几个模块:

  • 可以通过继承在parent的pom.xml统一定义重复配置;
  • 可以通过<modules>编译多个模块。

使用mvnw

我们使用Maven时,基本上只会用到mvn这一个命令。有些童鞋可能听说过mvnw,这个是啥?

mvnw是Maven Wrapper的缩写。因为我们安装Maven时,默认情况下,系统所有项目都会使用全局安装的这个Maven版本。但是,对于某些项目来说,它可能必须使用某个特定的Maven版本,这个时候,就可以使用Maven Wrapper,它可以负责给这个特定的项目安装指定版本的Maven,而其他项目不受影响。

简单地说,Maven Wrapper就是给一个项目提供一个独立的,指定版本的Maven给它使用。

安装Maven Wrapper

安装Maven Wrapper最简单的方式是在项目的根目录(即pom.xml所在的目录)下运行安装命令:

1
$ mvn wrapper:wrapper

它会自动使用最新版本的Maven。如果要指定使用的Maven版本,使用下面的安装命令指定版本,例如3.9.0

1
$ mvn wrapper:wrapper -Dmaven=3.9.0

安装后,查看项目结构:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
my-project
├── .mvn
│ └── wrapper
│ └── maven-wrapper.properties
├── mvnw
├── mvnw.cmd
├── pom.xml
└── src
   ├── main
   │ ├── java
   │ └── resources
   └── test
   ├── java
   └── resources

发现多了mvnwmvnw.cmd.mvn目录,我们只需要把mvn命令改成mvnw就可以使用跟项目关联的Maven。例如:

1
mvnw clean package

在Linux或macOS下运行时需要加上./

1
$ ./mvnw clean package

Maven Wrapper的另一个作用是把项目的mvnwmvnw.cmd.mvn提交到版本库中,可以使所有开发人员使用统一的Maven版本。

练习

使用mvnw编译hello项目。

下载练习

小结

使用Maven Wrapper,可以为一个项目指定特定的Maven版本。



当我们使用commons-logging这些第三方开源库的时候,我们实际上是通过Maven自动下载它的jar包,并根据其pom.xml解析依赖,自动把相关依赖包都下载后加入到classpath。

那么问题来了:当我们自己写了一个牛逼的开源库时,非常希望别人也能使用,总不能直接放个jar包的链接让别人下载吧?

如果我们把自己的开源库放到Maven的repo中,那么,别人只需按标准引用groupId:artifactId:version,即可自动下载jar包以及相关依赖。因此,本节我们介绍如何发布一个库到Maven的repo中。

把自己的库发布到Maven的repo中有好几种方法,我们介绍3种最常用的方法。

以静态文件发布

如果我们观察一个中央仓库的Artifact结构,例如Commons Math,它的groupId是org.apache.commons,artifactId是commons-math3,以版本3.6.1为例,发布在中央仓库的文件夹路径就是https://repo1.maven.org/maven2/org/apache/commons/commons-math3/3.6.1/,在此文件夹下,commons-math3-3.6.1.jar就是发布的jar包,commons-math3-3.6.1.pom就是它的pom.xml描述文件,commons-math3-3.6.1-sources.jar是源代码,commons-math3-3.6.1-javadoc.jar是文档。其它以.asc.md5.sha1结尾的文件分别是GPG签名、MD5摘要和SHA-1摘要。

我们只要按照这种目录结构组织文件,它就是一个有效的Maven仓库。

我们以广受好评的开源项目how-to-become-rich为例,先创建Maven工程目录结构如下:

1
2
3
4
5
6
7
8
9
10
11
how-to-become-rich
├── maven-repo <-- Maven本地文件仓库
├── pom.xml <-- 项目文件
├── src
│   ├── main
│   │   ├── java <-- 源码目录
│   │   └── resources <-- 资源目录
│   └── test
│   ├── java <-- 测试源码目录
│   └── resources <-- 测试资源目录
└── target <-- 编译输出目录

pom.xml中添加如下内容:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
<project ...>
...
<distributionManagement>
<repository>
<id>local-repo-release</id>
<name>GitHub Release</name>
<url>file://${project.basedir}/maven-repo</url>
</repository>
</distributionManagement>

<build>
<plugins>
<plugin>
<artifactId>maven-source-plugin</artifactId>
<executions>
<execution>
<id>attach-sources</id>
<phase>package</phase>
<goals>
<goal>jar-no-fork</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<artifactId>maven-javadoc-plugin</artifactId>
<executions>
<execution>
<id>attach-javadocs</id>
<phase>package</phase>
<goals>
<goal>jar</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

注意到<distributionManagement>,它指示了发布的软件包的位置,这里的<url>是项目根目录下的maven-repo目录,在<build>中定义的两个插件maven-source-pluginmaven-javadoc-plugin分别用来创建源码和javadoc,如果不想发布源码,可以把对应的插件去掉。

我们直接在项目根目录下运行Maven命令mvn clean package deploy,如果一切顺利,我们就可以在maven-repo目录下找到部署后的所有文件如下:

how-to-become-rich-repo

最后一步,是把这个工程推到GitHub上,并选择Settings-GitHub Pages,选择master branch启用Pages服务:

enable-github-pages

这样,把全部内容推送至GitHub后,即可作为静态网站访问Maven的repo,它的地址是https://michaelliao.github.io/how-to-become-rich/maven-repo/。版本1.0.0对应的jar包地址是:

1
https://michaelliao.github.io/how-to-become-rich/maven-repo/com/itranswarp/rich/how-to-become-rich/1.0.0/how-to-become-rich-1.0.0.jar

现在,如果其他人希望引用这个Maven包,我们可以告知如下依赖即可:

1
2
3
4
5
<dependency>
<groupId>com.itranswarp.rich</groupId>
<artifactId>how-to-become-rich</artifactId>
<version>1.0.0</version>
</dependency>

但是,除了正常导入依赖外,对方还需要再添加一个<repository>的声明,即使用方完整的pom.xml如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<groupId>example</groupId>
<artifactId>how-to-become-rich-usage</artifactId>
<version>1.0-SNAPSHOT</version>
<packaging>jar</packaging>

<properties>
<maven.compiler.source>11</maven.compiler.source>
<maven.compiler.target>11</maven.compiler.target>
<java.version>11</java.version>
</properties>

<repositories>
<repository>
<id>github-rich-repo</id>
<name>The Maven Repository on Github</name>
<url>https://michaelliao.github.io/how-to-become-rich/maven-repo/</url>
</repository>
</repositories>

<dependencies>
<dependency>
<groupId>com.itranswarp.rich</groupId>
<artifactId>how-to-become-rich</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
</project>

<repository>中,我们必须声明发布的Maven的repo地址,其中<id><name>可以任意填写,<url>填入GitHub Pages提供的地址+/maven-repo/后缀。现在,即可正常引用这个库并编写代码如下:

1
2
Millionaire millionaire = new Millionaire();
System.out.println(millionaire.howToBecomeRich());

有的童鞋会问,为什么使用commons-logging等第三方库时,并不需要声明repo地址?这是因为这些库都是发布到Maven中央仓库的,发布到中央仓库后,不需要告诉Maven仓库地址,因为它知道中央仓库的地址默认是https://repo1.maven.org/maven2/,也可以通过~/.m2/settings.xml指定一个代理仓库地址以替代中央仓库来提高速度(参考依赖管理的Maven镜像)。

因为GitHub Pages并不会把我们发布的Maven包同步到中央仓库,所以使用方必须手动添加一个我们提供的仓库地址。

此外,通过GitHub Pages发布Maven repo时需要注意一点,即不要改动已发布的版本。因为Maven的仓库是不允许修改任何版本的,对一个库进行修改的唯一方法是发布一个新版本。但是通过静态文件的方式发布repo,实际上我们是可以修改jar文件的,但最好遵守规范,不要修改已发布版本。

通过Nexus发布到中央仓库

有的童鞋会问,能不能把自己的开源库发布到Maven的中央仓库,这样用户就不需要声明repo地址,可以直接引用,显得更专业。

当然可以,但我们不能直接发布到Maven中央仓库,而是通过曲线救国的方式,发布到central.sonatype.org,它会定期自动同步到Maven的中央仓库。Nexus是一个支持Maven仓库的软件,由Sonatype开发,有免费版和专业版两个版本,很多大公司内部都使用Nexus作为自己的私有Maven仓库,而这个central.sonatype.org相当于面向开源的一个Nexus公共服务。

所以,第一步是在central.sonatype.org上注册一个账号,如果注册顺利并审核通过,会得到一个登录账号,然后,通过这个页面一步一步操作就可以成功地将自己的Artifact发布到Nexus上,再耐心等待几个小时后,你的Artifact就会出现在Maven的中央仓库中。

这里简单提一下发布重点与难点:

  • 必须正确创建GPG签名,Linux和Mac下推荐使用gnupg2;
  • 必须在~/.m2/settings.xml中配置好登录用户名和口令,以及GPG口令:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
<settings ...>
...
<servers>
<server>
<id>ossrh</id>
<username>OSSRH-USERNAME</username>
<password>OSSRH-PASSWORD</password>
</server>
</servers>
<profiles>
<profile>
<id>ossrh</id>
<activation>
<activeByDefault>true</activeByDefault>
</activation>
<properties>
<gpg.executable>gpg2</gpg.executable>
<gpg.passphrase>GPG-PASSWORD</gpg.passphrase>
</properties>
</profile>
</profiles>
</settings>

在待发布的Artifact的pom.xml中添加OSS的Maven repo地址,以及maven-jar-pluginmaven-source-pluginmaven-javadoc-pluginmaven-gpg-pluginnexus-staging-maven-plugin

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
<project ...>
...
<distributionManagement>
<snapshotRepository>
<id>ossrh</id>
<url>https://oss.sonatype.org/content/repositories/snapshots</url>
</snapshotRepository>

<repository>
<id>ossrh</id>
<name>Nexus Release Repository</name>
<url>http://oss.sonatype.org/service/local/staging/deploy/maven2/</url>
</repository>
</distributionManagement>

<build>
<plugins>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-jar-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>jar</goal>
<goal>test-jar</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-source-plugin</artifactId>
<executions>
<execution>
<id>attach-sources</id>
<goals>
<goal>jar-no-fork</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-javadoc-plugin</artifactId>
<executions>
<execution>
<id>attach-javadocs</id>
<goals>
<goal>jar</goal>
</goals>
<configuration>
<additionalOption>
<additionalOption>-Xdoclint:none</additionalOption>
</additionalOption>
</configuration>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-gpg-plugin</artifactId>
<executions>
<execution>
<id>sign-artifacts</id>
<phase>verify</phase>
<goals>
<goal>sign</goal>
</goals>
</execution>
</executions>
</plugin>
<plugin>
<groupId>org.sonatype.plugins</groupId>
<artifactId>nexus-staging-maven-plugin</artifactId>
<version>1.6.3</version>
<extensions>true</extensions>
<configuration>
<serverId>ossrh</serverId>
<nexusUrl>https://oss.sonatype.org/</nexusUrl>
<autoReleaseAfterClose>true</autoReleaseAfterClose>
</configuration>
</plugin>
</plugins>
</build>
</project>

最后执行命令mvn clean package deploy即可发布至central.sonatype.org

此方法前期需要复杂的申请账号和项目的流程,后期需要安装调试GPG,但只要跑通流程,后续发布都只需要一行命令。

发布到私有仓库

通过nexus-staging-maven-plugin除了可以发布到central.sonatype.org外,也可以发布到私有仓库,例如,公司内部自己搭建的Nexus服务器。

如果没有私有Nexus服务器,还可以发布到GitHub Packages。GitHub Packages是GitHub提供的仓库服务,支持Maven、NPM、Docker等。使用GitHub Packages时,无论是发布Artifact,还是引用已发布的Artifact,都需要明确的授权Token,因此,GitHub Packages只能作为私有仓库使用。

在发布前,我们必须首先登录后在用户的Settings-Developer settings-Personal access tokens中创建两个Token,一个用于发布,一个用于使用。发布Artifact的Token必须有repowrite:packagesread:packages权限:

token-scopes

使用Artifact的Token只需要read:packages权限。

在发布端,把GitHub的用户名和发布Token写入~/.m2/settings.xml配置中:

1
2
3
4
5
6
7
8
9
10
<settings ...>
...
<servers>
<server>
<id>github-release</id>
<username>GITHUB-USERNAME</username>
<password>f052...c21f</password>
</server>
</servers>
</settings>

然后,在需要发布的Artifact的pom.xml中,添加一个<repository>声明:

1
2
3
4
5
6
7
8
9
10
<project ...>
...
<distributionManagement>
<repository>
<id>github-release</id>
<name>GitHub Release</name>
<url>https://maven.pkg.github.com/michaelliao/complex</url>
</repository>
</distributionManagement>
</project>

注意到<id>~/.m2/settings.xml配置中的<id>要保持一致,因为发布时Maven根据id找到用于登录的用户名和Token,才能成功上传文件到GitHub。我们直接通过命令mvn clean package deploy部署,成功后,在GitHub用户页面可以看到该Artifact:

github-packages

完整的配置请参考complex项目,这是一个非常简单的支持复数运算的库。

使用该Artifact时,因为GitHub的Package只能作为私有仓库使用,所以除了在使用方的pom.xml中声明<repository>外:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
<project ...>
...
<repositories>
<repository>
<id>github-release</id>
<name>GitHub Release</name>
<url>https://maven.pkg.github.com/michaelliao/complex</url>
</repository>
</repositories>

<dependencies>
<dependency>
<groupId>com.itranswarp</groupId>
<artifactId>complex</artifactId>
<version>1.0.0</version>
</dependency>
</dependencies>
...
</project>

还需要把有读权限的Token配置到~/.m2/settings.xml文件中。

练习

使用maven-deploy-plugin把Artifact发布到本地。

小结

使用Maven发布一个Artifact时:

  • 可以发布到本地,然后推送到远程Git库,由静态服务器提供基于网页的repo服务,使用方必须声明repo地址;
  • 可以发布到central.sonatype.org,并自动同步到Maven中央仓库,需要前期申请账号以及本地配置;
  • 可以发布到GitHub Packages作为私有仓库使用,必须提供Token以及正确的权限才能发布和使用。

留言與分享

作者的圖片

Kein Chan

這是獨立全棧工程師Kein Chan的技術博客
分享一些技術教程,命令備忘(cheat-sheet)等


全棧工程師
資深技術顧問
數據科學家
Hit廣島觀光大使


Tokyo/Macau