pandas 快速入门#
这是 pandas 的一个简短介绍,主要面向新用户。你可以在实用代码片段 中查看更复杂的示例。
通常,我们按如下方式导入
1 2 3 In [1]: import numpy as np In [2]: import pandas as pd
pandas 中的基本数据结构#
Pandas 提供了两种用于处理数据的类
Series
:一个一维的带标签数组,可容纳任何类型的数据
例如整数、字符串、Python 对象等。
DataFrame
:一个二维数据结构,像二维数组或带有行和列的表格一样容纳数据。
对象创建#
请参阅数据结构简介 部分。
通过传入值列表创建Series
,让 pandas 创建默认的RangeIndex
。
1 2 3 4 5 6 7 8 9 10 11 In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8]) In [4]: s Out[4]: 0 1.0 1 3.0 2 5.0 3 NaN 4 6.0 5 8.0 dtype: float64
通过传入 NumPy 数组,使用date_range()
创建带有日期时间索引和标签列的DataFrame
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 In [5]: dates = pd.date_range("20130101", periods=6) In [6]: dates Out[6]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list("ABCD")) In [8]: df Out[8]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
通过传入一个对象字典创建DataFrame
,其中键是列标签,值是列值。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 In [9]: df2 = pd.DataFrame( ...: { ...: "A": 1.0, ...: "B": pd.Timestamp("20130102"), ...: "C": pd.Series(1, index=list(range(4)), dtype="float32"), ...: "D": np.array([3] * 4, dtype="int32"), ...: "E": pd.Categorical(["test", "train", "test", "train"]), ...: "F": "foo", ...: } ...: ) ...: In [10]: df2 Out[10]: A B C D E F 0 1.0 2013-01-02 1.0 3 test foo 1 1.0 2013-01-02 1.0 3 train foo 2 1.0 2013-01-02 1.0 3 test foo 3 1.0 2013-01-02 1.0 3 train foo
生成的DataFrame
的列具有不同的dtypes
1 2 3 4 5 6 7 8 9 In [11]: df2.dtypes Out[11]: A float64 B datetime64[s] C float32 D int32 E category F object dtype: object
如果你使用 IPython,列名(以及公共属性)的 Tab 自动补全功能会自动启用。以下是部分将自动补全的属性:
1 2 3 4 5 6 7 8 9 10 11 12 13 In [12]: df2.<TAB> # noqa: E225, E999 df2.A df2.bool df2.abs df2.boxplot df2.add df2.C df2.add_prefix df2.clip df2.add_suffix df2.columns df2.align df2.copy df2.all df2.count df2.any df2.combine df2.append df2.D df2.apply df2.describe df2.applymap df2.diff df2.B df2.duplicated
如你所见,列 A
、B
、C
和 D
会自动 Tab 补全。E
和 F
也在其中;其余属性为简洁起见已被截断。
查看数据#
请参阅基本核心功能 部分。
使用DataFrame.head()
和DataFrame.tail()
分别查看框架的顶部和底部行。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 In [13]: df.head() Out[13]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [14]: df.tail(3) Out[14]: A B C D 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
显示DataFrame.index
或DataFrame.columns
1 2 3 4 5 6 7 8 In [15]: df.index Out[15]: DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04', '2013-01-05', '2013-01-06'], dtype='datetime64[ns]', freq='D') In [16]: df.columns Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')
使用DataFrame.to_numpy()
返回底层数据的 NumPy 表示,不包含索引或列标签。
1 2 3 4 5 6 7 8 In [17]: df.to_numpy() Out[17]: array([[ 0.4691, -0.2829, -1.5091, -1.1356], [ 1.2121, -0.1732, 0.1192, -1.0442], [-0.8618, -2.1046, -0.4949, 1.0718], [ 0.7216, -0.7068, -1.0396, 0.2719], [-0.425 , 0.567 , 0.2762, -1.0874], [-0.6737, 0.1136, -1.4784, 0.525 ]])
注意
NumPy 数组的整个数组只有一个 dtype,而 pandas DataFrames 的每列有一个 dtype 。当你调用DataFrame.to_numpy()
时,pandas 会找到能够容纳 DataFrame 中 所有 dtypes 的 NumPy dtype。如果共同的数据类型是 object
,则DataFrame.to_numpy()
将需要复制数据。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 In [18]: df2.dtypes Out[18]: A float64 B datetime64[s] C float32 D int32 E category F object dtype: object In [19]: df2.to_numpy() Out[19]: array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'], [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']], dtype=object)
describe()
显示数据的快速统计摘要
1 2 3 4 5 6 7 8 9 10 11 In [20]: df.describe() Out[20]: A B C D count 6.000000 6.000000 6.000000 6.000000 mean 0.073711 -0.431125 -0.687758 -0.233103 std 0.843157 0.922818 0.779887 0.973118 min -0.861849 -2.104569 -1.509059 -1.135632 25% -0.611510 -0.600794 -1.368714 -1.076610 50% 0.022070 -0.228039 -0.767252 -0.386188 75% 0.658444 0.041933 -0.034326 0.461706 max 1.212112 0.567020 0.276232 1.071804
转置数据
1 2 3 4 5 6 7 In [21]: df.T Out[21]: 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06 A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690 B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648 C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427 D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
DataFrame.sort_index()
按轴排序
1 2 3 4 5 6 7 8 9 In [22]: df.sort_index(axis=1, ascending=False) Out[22]: D C B A 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112 2013-01-02 -1.044236 0.119209 -0.173215 1.212112 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849 2013-01-04 0.271860 -1.039575 -0.706771 0.721555 2013-01-05 -1.087401 0.276232 0.567020 -0.424972 2013-01-06 0.524988 -1.478427 0.113648 -0.673690
DataFrame.sort_values()
按值排序
1 2 3 4 5 6 7 8 9 In [23]: df.sort_values(by="B") Out[23]: A B C D 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
请参阅索引文档索引与选择数据 和MultiIndex / 高级索引 。
Getitem ([]
)#
对于DataFrame
,传入单个标签会选择一列并生成一个Series
,等同于 df.A
1 2 3 4 5 6 7 8 9 In [24]: df["A"] Out[24]: 2013-01-01 0.469112 2013-01-02 1.212112 2013-01-03 -0.861849 2013-01-04 0.721555 2013-01-05 -0.424972 2013-01-06 -0.673690 Freq: D, Name: A, dtype: float64
对于DataFrame
,传入切片 :
会选择匹配的行。
1 2 3 4 5 6 7 8 9 10 11 12 13 In [25]: df[0:3] Out[25]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [26]: df["20130102":"20130104"] Out[26]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
按标签选择#
更多信息请参阅按标签选择 ,使用DataFrame.loc()
或DataFrame.at()
。
选择与标签匹配的行
1 2 3 4 5 6 7 In [27]: df.loc[dates[0]] Out[27]: A 0.469112 B -0.282863 C -1.509059 D -1.135632 Name: 2013-01-01 00:00:00, dtype: float64
选择所有行 (:
) 和选定的列标签
1 2 3 4 5 6 7 8 9 In [28]: df.loc[:, ["A", "B"]] Out[28]: A B 2013-01-01 0.469112 -0.282863 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020 2013-01-06 -0.673690 0.113648
对于标签切片,两个端点都包含 在内
1 2 3 4 5 6 In [29]: df.loc["20130102":"20130104", ["A", "B"]] Out[29]: A B 2013-01-02 1.212112 -0.173215 2013-01-03 -0.861849 -2.104569 2013-01-04 0.721555 -0.706771
选择单个行和列标签会返回一个标量
1 2 In [30]: df.loc[dates[0], "A"] Out[30]: 0.4691122999071863
为了快速访问标量(等同于之前的方法)
1 2 In [31]: df.at[dates[0], "A"] Out[31]: 0.4691122999071863
按位置选择#
更多信息请参阅按位置选择 ,使用DataFrame.iloc()
或DataFrame.iat()
。
通过传入整数的位置进行选择
1 2 3 4 5 6 7 In [32]: df.iloc[3] Out[32]: A 0.721555 B -0.706771 C -1.039575 D 0.271860 Name: 2013-01-04 00:00:00, dtype: float64
整数切片行为类似于 NumPy/Python
1 2 3 4 5 In [33]: df.iloc[3:5, 0:2] Out[33]: A B 2013-01-04 0.721555 -0.706771 2013-01-05 -0.424972 0.567020
整数位置列表
1 2 3 4 5 6 In [34]: df.iloc[[1, 2, 4], [0, 2]] Out[34]: A C 2013-01-02 1.212112 0.119209 2013-01-03 -0.861849 -0.494929 2013-01-05 -0.424972 0.276232
显式切片行
1 2 3 4 5 In [35]: df.iloc[1:3, :] Out[35]: A B C D 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
显式切片列
1 2 3 4 5 6 7 8 9 In [36]: df.iloc[:, 1:3] Out[36]: B C 2013-01-01 -0.282863 -1.509059 2013-01-02 -0.173215 0.119209 2013-01-03 -2.104569 -0.494929 2013-01-04 -0.706771 -1.039575 2013-01-05 0.567020 0.276232 2013-01-06 0.113648 -1.478427
显式获取值
1 2 In [37]: df.iloc[1, 1] Out[37]: -0.17321464905330858
为了快速访问标量(等同于之前的方法)
1 2 In [38]: df.iat[1, 1] Out[38]: -0.17321464905330858
布尔索引#
选择 df.A
大于 0
的行。
1 2 3 4 5 6 In [39]: df[df["A"] > 0] Out[39]: A B C D 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
从满足布尔条件的DataFrame
中选择值
1 2 3 4 5 6 7 8 9 In [40]: df[df > 0] Out[40]: A B C D 2013-01-01 0.469112 NaN NaN NaN 2013-01-02 1.212112 NaN 0.119209 NaN 2013-01-03 NaN NaN NaN 1.071804 2013-01-04 0.721555 NaN NaN 0.271860 2013-01-05 NaN 0.567020 0.276232 NaN 2013-01-06 NaN 0.113648 NaN 0.524988
使用isin()
方法进行过滤
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 In [41]: df2 = df.copy() In [42]: df2["E"] = ["one", "one", "two", "three", "four", "three"] In [43]: df2 Out[43]: A B C D E 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three In [44]: df2[df2["E"].isin(["two", "four"])] Out[44]: A B C D E 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
设置新列会自动按索引对齐数据
1 2 3 4 5 6 7 8 9 10 11 12 13 In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range("20130102", periods=6)) In [46]: s1 Out[46]: 2013-01-02 1 2013-01-03 2 2013-01-04 3 2013-01-05 4 2013-01-06 5 2013-01-07 6 Freq: D, dtype: int64 In [47]: df["F"] = s1
按标签设置值
1 In [48]: df.at[dates[0], "A"] = 0
按位置设置值
1 In [49]: df.iat[0, 1] = 0
通过分配 NumPy 数组进行设置
1 In [50]: df.loc[:, "D"] = np.array([5] * len(df))
先前的设置操作的结果
1 2 3 4 5 6 7 8 9 In [51]: df Out[51]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 5.0 NaN 2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 2013-01-05 -0.424972 0.567020 0.276232 5.0 4.0 2013-01-06 -0.673690 0.113648 -1.478427 5.0 5.0
带设置的 where
操作
1 2 3 4 5 6 7 8 9 10 11 12 13 In [52]: df2 = df.copy() In [53]: df2[df2 > 0] = -df2 In [54]: df2 Out[54]: A B C D F 2013-01-01 0.000000 0.000000 -1.509059 -5.0 NaN 2013-01-02 -1.212112 -0.173215 -0.119209 -5.0 -1.0 2013-01-03 -0.861849 -2.104569 -0.494929 -5.0 -2.0 2013-01-04 -0.721555 -0.706771 -1.039575 -5.0 -3.0 2013-01-05 -0.424972 -0.567020 -0.276232 -5.0 -4.0 2013-01-06 -0.673690 -0.113648 -1.478427 -5.0 -5.0
缺失数据#
对于 NumPy 数据类型,np.nan
表示缺失数据。默认情况下,它不包含在计算中。请参阅缺失数据 部分。
重新索引允许你更改/添加/删除指定轴上的索引。这会返回数据的副本。
1 2 3 4 5 6 7 8 9 10 11 In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ["E"]) In [56]: df1.loc[dates[0] : dates[1], "E"] = 1 In [57]: df1 Out[57]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5.0 NaN 1.0 2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 NaN 2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 NaN
DataFrame.dropna()
删除任何包含缺失数据的行
1 2 3 4 In [58]: df1.dropna(how="any") Out[58]: A B C D F E 2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0
DataFrame.fillna()
填充缺失数据
1 2 3 4 5 6 7 In [59]: df1.fillna(value=5) Out[59]: A B C D F E 2013-01-01 0.000000 0.000000 -1.509059 5.0 5.0 1.0 2013-01-02 1.212112 -0.173215 0.119209 5.0 1.0 1.0 2013-01-03 -0.861849 -2.104569 -0.494929 5.0 2.0 5.0 2013-01-04 0.721555 -0.706771 -1.039575 5.0 3.0 5.0
isna()
获取值为 nan
的布尔掩码
1 2 3 4 5 6 7 In [60]: pd.isna(df1) Out[60]: A B C D F E 2013-01-01 False False False False True False 2013-01-02 False False False False False False 2013-01-03 False False False False False True 2013-01-04 False False False False False True
请参阅二元运算基本部分 。
操作通常排除 缺失数据。
计算每列的平均值
1 2 3 4 5 6 7 8 In [61]: df.mean() Out[61]: A -0.004474 B -0.383981 C -0.687758 D 5.000000 F 3.000000 dtype: float64
计算每行的平均值
1 2 3 4 5 6 7 8 9 In [62]: df.mean(axis=1) Out[62]: 2013-01-01 0.872735 2013-01-02 1.431621 2013-01-03 0.707731 2013-01-04 1.395042 2013-01-05 1.883656 2013-01-06 1.592306 Freq: D, dtype: float64
与具有不同索引或列的另一个Series
或DataFrame
进行操作时,结果将与索引或列标签的并集对齐。此外,pandas 会沿指定维度自动广播,并将未对齐的标签填充为np.nan
。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2) In [64]: s Out[64]: 2013-01-01 NaN 2013-01-02 NaN 2013-01-03 1.0 2013-01-04 3.0 2013-01-05 5.0 2013-01-06 NaN Freq: D, dtype: float64 In [65]: df.sub(s, axis="index") Out[65]: A B C D F 2013-01-01 NaN NaN NaN NaN NaN 2013-01-02 NaN NaN NaN NaN NaN 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0 2013-01-06 NaN NaN NaN NaN NaN
用户定义函数#
DataFrame.agg()
和DataFrame.transform()
分别应用一个用户定义函数,该函数会减少或广播其结果。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 In [66]: df.agg(lambda x: np.mean(x) * 5.6) Out[66]: A -0.025054 B -2.150294 C -3.851445 D 28.000000 F 16.800000 dtype: float64 In [67]: df.transform(lambda x: x * 101.2) Out[67]: A B C D F 2013-01-01 0.000000 0.000000 -152.716721 506.0 NaN 2013-01-02 122.665737 -17.529322 12.063922 506.0 101.2 2013-01-03 -87.219115 -212.982405 -50.086843 506.0 202.4 2013-01-04 73.021382 -71.525239 -105.204988 506.0 303.6 2013-01-05 -43.007200 57.382459 27.954680 506.0 404.8 2013-01-06 -68.177398 11.501219 -149.616767 506.0 506.0
值计数#
更多信息请参阅直方图和离散化 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 In [68]: s = pd.Series(np.random.randint(0, 7, size=10)) In [69]: s Out[69]: 0 4 1 2 2 1 3 2 4 6 5 4 6 4 7 6 8 4 9 4 dtype: int64 In [70]: s.value_counts() Out[70]: 4 5 2 2 6 2 1 1 Name: count, dtype: int64
字符串方法#
Series
在 str
属性中配备了一组字符串处理方法,可以轻松地对数组的每个元素进行操作,如下面的代码片段所示。更多信息请参阅矢量化字符串方法 。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In [71]: s = pd.Series(["A", "B", "C", "Aaba", "Baca", np.nan, "CABA", "dog", "cat"]) In [72]: s.str.lower() Out[72]: 0 a 1 b 2 c 3 aaba 4 baca 5 NaN 6 caba 7 dog 8 cat dtype: object
pandas 提供了各种功能,可以轻松地将 Series
和 DataFrame
对象与各种集合逻辑(用于索引)和关系代数功能(用于连接/合并类型操作)结合在一起。
请参阅合并 部分。
使用concat()
按行拼接 pandas 对象
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 In [73]: df = pd.DataFrame(np.random.randn(10, 4)) In [74]: df Out[74]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces) Out[76]: 0 1 2 3 0 -0.548702 1.467327 -1.015962 -0.483075 1 1.637550 -1.217659 -0.291519 -1.745505 2 -0.263952 0.991460 -0.919069 0.266046 3 -0.709661 1.669052 1.037882 -1.705775 4 -0.919854 -0.042379 1.247642 -0.009920 5 0.290213 0.495767 0.362949 1.548106 6 -1.131345 -0.089329 0.337863 -0.945867 7 -0.932132 1.956030 0.017587 -0.016692 8 -0.575247 0.254161 -1.143704 0.215897 9 1.193555 -0.077118 -0.408530 -0.862495
merge()
支持沿着特定列进行 SQL 风格的连接。请参阅数据库风格连接 部分。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 In [77]: left = pd.DataFrame({"key": ["foo", "foo"], "lval": [1, 2]}) In [78]: right = pd.DataFrame({"key": ["foo", "foo"], "rval": [4, 5]}) In [79]: left Out[79]: key lval 0 foo 1 1 foo 2 In [80]: right Out[80]: key rval 0 foo 4 1 foo 5 In [81]: pd.merge(left, right, on="key") Out[81]: key lval rval 0 foo 1 4 1 foo 1 5 2 foo 2 4 3 foo 2 5
merge()
基于唯一键进行合并
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 In [82]: left = pd.DataFrame({"key": ["foo", "bar"], "lval": [1, 2]}) In [83]: right = pd.DataFrame({"key": ["foo", "bar"], "rval": [4, 5]}) In [84]: left Out[84]: key lval 0 foo 1 1 bar 2 In [85]: right Out[85]: key rval 0 foo 4 1 bar 5 In [86]: pd.merge(left, right, on="key") Out[86]: key lval rval 0 foo 1 4 1 bar 2 5
“分组”指的是一个或多个以下步骤的过程
根据某些条件将数据分拆 成组
对每个组独立地应用 一个函数
将结果组合 成一个数据结构
请参阅分组 部分。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 In [87]: df = pd.DataFrame( ....: { ....: "A": ["foo", "bar", "foo", "bar", "foo", "bar", "foo", "foo"], ....: "B": ["one", "one", "two", "three", "two", "two", "one", "three"], ....: "C": np.random.randn(8), ....: "D": np.random.randn(8), ....: } ....: ) ....: In [88]: df Out[88]: A B C D 0 foo one 1.346061 -1.577585 1 bar one 1.511763 0.396823 2 foo two 1.627081 -0.105381 3 bar three -0.990582 -0.532532 4 foo two -0.441652 1.453749 5 bar two 1.211526 1.208843 6 foo one 0.268520 -0.080952 7 foo three 0.024580 -0.264610
按列标签分组,选择列标签,然后将DataFrameGroupBy.sum()
函数应用于结果组
1 2 3 4 5 6 In [89]: df.groupby("A")[["C", "D"]].sum() Out[89]: C D A bar 1.732707 1.073134 foo 2.824590 -0.574779
按多列标签分组会形成MultiIndex
。
1 2 3 4 5 6 7 8 9 10 In [90]: df.groupby(["A", "B"]).sum() Out[90]: C D A B bar one 1.511763 0.396823 three -0.990582 -0.532532 two 1.211526 1.208843 foo one 1.614581 -1.658537 three 0.024580 -0.264610 two 1.185429 1.348368
请参阅层次化索引 和重塑 部分。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 In [91]: arrays = [ ....: ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ....: ["one", "two", "one", "two", "one", "two", "one", "two"], ....: ] ....: In [92]: index = pd.MultiIndex.from_arrays(arrays, names=["first", "second"]) In [93]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=["A", "B"]) In [94]: df2 = df[:4] In [95]: df2 Out[95]: A B first second bar one -0.727965 -0.589346 two 0.339969 -0.693205 baz one -0.339355 0.593616 two 0.884345 1.591431
stack()
方法“压缩”了 DataFrame 列中的一个层
1 2 3 4 5 6 7 8 9 10 11 12 13 14 In [96]: stacked = df2.stack(future_stack=True) In [97]: stacked Out[97]: first second bar one A -0.727965 B -0.589346 two A 0.339969 B -0.693205 baz one A -0.339355 B 0.593616 two A 0.884345 B 1.591431 dtype: float64
对于一个“堆叠”的 DataFrame 或 Series(其 index
为 MultiIndex
),stack()
的逆操作是 unstack()
,它默认会解除堆叠最底层
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 In [98]: stacked.unstack() Out[98]: A B first second bar one -0.727965 -0.589346 two 0.339969 -0.693205 baz one -0.339355 0.593616 two 0.884345 1.591431 In [99]: stacked.unstack(1) Out[99]: second one two first bar A -0.727965 0.339969 B -0.589346 -0.693205 baz A -0.339355 0.884345 B 0.593616 1.591431 In [100]: stacked.unstack(0) Out[100]: first bar baz second one A -0.727965 -0.339355 B -0.589346 0.593616 two A 0.339969 0.884345 B -0.693205 1.591431
透视表#
请参阅透视表 部分。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 In [101]: df = pd.DataFrame( .....: { .....: "A": ["one", "one", "two", "three"] * 3, .....: "B": ["A", "B", "C"] * 4, .....: "C": ["foo", "foo", "foo", "bar", "bar", "bar"] * 2, .....: "D": np.random.randn(12), .....: "E": np.random.randn(12), .....: } .....: ) .....: In [102]: df Out[102]: A B C D E 0 one A foo -1.202872 0.047609 1 one B foo -1.814470 -0.136473 2 two C foo 1.018601 -0.561757 3 three A bar -0.595447 -1.623033 4 one B bar 1.395433 0.029399 5 one C bar -0.392670 -0.542108 6 two A foo 0.007207 0.282696 7 three B foo 1.928123 -0.087302 8 one C foo -0.055224 -1.575170 9 one A bar 2.395985 1.771208 10 two B bar 1.552825 0.816482 11 three C bar 0.166599 1.100230
pivot_table()
通过指定values
、index
和columns
来透视DataFrame
1 2 3 4 5 6 7 8 9 10 11 12 13 In [103]: pd.pivot_table(df, values="D", index=["A", "B"], columns=["C"]) Out[103]: C bar foo A B one A 2.395985 -1.202872 B 1.395433 -1.814470 C -0.392670 -0.055224 three A -0.595447 NaN B NaN 1.928123 C 0.166599 NaN two A NaN 0.007207 B 1.552825 NaN C NaN 1.018601
时间序列#
pandas 具有简单、强大且高效的功能,用于在频率转换期间执行重采样操作(例如,将秒级数据转换为 5 分钟级数据)。这在金融应用中非常常见,但不仅限于此。请参阅时间序列 部分。
1 2 3 4 5 6 7 8 In [104]: rng = pd.date_range("1/1/2012", periods=100, freq="s") In [105]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng) In [106]: ts.resample("5Min").sum() Out[106]: 2012-01-01 24182 Freq: 5min, dtype: int64
Series.tz_localize()
将时间序列本地化到某个时区
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 In [107]: rng = pd.date_range("3/6/2012 00:00", periods=5, freq="D") In [108]: ts = pd.Series(np.random.randn(len(rng)), rng) In [109]: ts Out[109]: 2012-03-06 1.857704 2012-03-07 -1.193545 2012-03-08 0.677510 2012-03-09 -0.153931 2012-03-10 0.520091 Freq: D, dtype: float64 In [110]: ts_utc = ts.tz_localize("UTC") In [111]: ts_utc Out[111]: 2012-03-06 00:00:00+00:00 1.857704 2012-03-07 00:00:00+00:00 -1.193545 2012-03-08 00:00:00+00:00 0.677510 2012-03-09 00:00:00+00:00 -0.153931 2012-03-10 00:00:00+00:00 0.520091 Freq: D, dtype: float64
Series.tz_convert()
将时区感知的时间序列转换为另一个时区
1 2 3 4 5 6 7 8 In [112]: ts_utc.tz_convert("US/Eastern") Out[112]: 2012-03-05 19:00:00-05:00 1.857704 2012-03-06 19:00:00-05:00 -1.193545 2012-03-07 19:00:00-05:00 0.677510 2012-03-08 19:00:00-05:00 -0.153931 2012-03-09 19:00:00-05:00 0.520091 Freq: D, dtype: float64
向时间序列添加非固定时长(BusinessDay
)
1 2 3 4 5 6 7 8 9 10 11 In [113]: rng Out[113]: DatetimeIndex(['2012-03-06', '2012-03-07', '2012-03-08', '2012-03-09', '2012-03-10'], dtype='datetime64[ns]', freq='D') In [114]: rng + pd.offsets.BusinessDay(5) Out[114]: DatetimeIndex(['2012-03-13', '2012-03-14', '2012-03-15', '2012-03-16', '2012-03-16'], dtype='datetime64[ns]', freq=None)
分类数据#
pandas 可以在DataFrame
中包含分类数据。有关完整文档,请参阅分类简介 和API 文档 。
1 2 3 4 In [115]: df = pd.DataFrame( .....: {"id": [1, 2, 3, 4, 5, 6], "raw_grade": ["a", "b", "b", "a", "a", "e"]} .....: ) .....:
将原始等级转换为分类数据类型
1 2 3 4 5 6 7 8 9 10 11 12 In [116]: df["grade"] = df["raw_grade"].astype("category") In [117]: df["grade"] Out[117]: 0 a 1 b 2 b 3 a 4 a 5 e Name: grade, dtype: category Categories (3, object): ['a', 'b', 'e']
将类别重命名为更有意义的名称
1 2 3 In [118]: new_categories = ["very good", "good", "very bad"] In [119]: df["grade"] = df["grade"].cat.rename_categories(new_categories)
重新排序类别并同时添加缺失的类别(Series.cat()
下的方法默认返回一个新的Series
)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 In [120]: df["grade"] = df["grade"].cat.set_categories( .....: ["very bad", "bad", "medium", "good", "very good"] .....: ) .....: In [121]: df["grade"] Out[121]: 0 very good 1 good 2 good 3 very good 4 very good 5 very bad Name: grade, dtype: category Categories (5, object): ['very bad', 'bad', 'medium', 'good', 'very good']
排序是按类别顺序,而不是字典顺序
1 2 3 4 5 6 7 8 9 In [122]: df.sort_values(by="grade") Out[122]: id raw_grade grade 5 6 e very bad 1 2 b good 2 3 b good 0 1 a very good 3 4 a very good 4 5 a very good
使用 observed=False
按分类列分组也会显示空类别
1 2 3 4 5 6 7 8 9 In [123]: df.groupby("grade", observed=False).size() Out[123]: grade very bad 1 bad 0 medium 0 good 2 very good 3 dtype: int64
请参阅绘图 文档。
我们使用标准约定来引用 matplotlib API
1 2 3 In [124]: import matplotlib.pyplot as plt In [125]: plt.close("all")
plt.close
方法用于关闭 图形窗口
1 2 3 4 5 In [126]: ts = pd.Series(np.random.randn(1000), index=pd.date_range("1/1/2000", periods=1000)) In [127]: ts = ts.cumsum() In [128]: ts.plot();
plot()
绘制所有列
1 2 3 4 5 6 7 8 9 10 11 12 In [129]: df = pd.DataFrame( .....: np.random.randn(1000, 4), index=ts.index, columns=["A", "B", "C", "D"] .....: ) .....: In [130]: df = df.cumsum() In [131]: plt.figure(); In [132]: df.plot(); In [133]: plt.legend(loc='best');
导入和导出数据#
请参阅IO 工具 部分。
CSV#
写入 CSV 文件: 使用DataFrame.to_csv()
1 2 3 In [134]: df = pd.DataFrame(np.random.randint(0, 5, (10, 5))) In [135]: df.to_csv("foo.csv")
从 CSV 文件读取: 使用read_csv()
1 2 3 4 5 6 7 8 9 10 11 12 13 In [136]: pd.read_csv("foo.csv") Out[136]: Unnamed: 0 0 1 2 3 4 0 0 4 3 1 1 2 1 1 1 0 2 3 2 2 2 1 4 2 1 2 3 3 0 4 0 2 2 4 4 4 2 2 3 4 5 5 4 0 4 3 1 6 6 2 1 2 0 3 7 7 4 0 4 4 4 8 8 4 4 1 0 1 9 9 0 4 3 0 3
Parquet#
写入 Parquet 文件
1 In [137]: df.to_parquet("foo.parquet")
使用read_parquet()
从 Parquet 文件读取
1 2 3 4 5 6 7 8 9 10 11 12 13 In [138]: pd.read_parquet("foo.parquet") Out[138]: 0 1 2 3 4 0 4 3 1 1 2 1 1 0 2 3 2 2 1 4 2 1 2 3 0 4 0 2 2 4 4 2 2 3 4 5 4 0 4 3 1 6 2 1 2 0 3 7 4 0 4 4 4 8 4 4 1 0 1 9 0 4 3 0 3
Excel#
读写Excel 。
使用DataFrame.to_excel()
写入 Excel 文件
1 In [139]: df.to_excel("foo.xlsx", sheet_name="Sheet1")
使用read_excel()
从 Excel 文件读取
1 2 3 4 5 6 7 8 9 10 11 12 13 In [140]: pd.read_excel("foo.xlsx", "Sheet1", index_col=None, na_values=["NA"]) Out[140]: Unnamed: 0 0 1 2 3 4 0 0 4 3 1 1 2 1 1 1 0 2 3 2 2 2 1 4 2 1 2 3 3 0 4 0 2 2 4 4 4 2 2 3 4 5 5 4 0 4 3 1 6 6 2 1 2 0 3 7 7 4 0 4 4 4 8 8 4 4 1 0 1 9 9 0 4 3 0 3
常见陷阱#
如果您尝试对Series
或DataFrame
执行布尔操作,可能会看到类似以下的异常:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 In [141]: if pd.Series([False, True, False]): .....: print("I was true") .....: --------------------------------------------------------------------------- ValueError Traceback (most recent call last) <ipython-input-141-b27eb9c1dfc0> in ?() ----> 1 if pd.Series([False, True, False]): 2 print("I was true") ~/work/pandas/pandas/pandas/core/generic.py in ?(self) 1575 @final 1576 def __nonzero__(self) -> NoReturn: -> 1577 raise ValueError( 1578 f"The truth value of a {type(self).__name__} is ambiguous. " 1579 "Use a.empty, a.bool(), a.item(), a.any() or a.all()." 1580 ) ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all().
请参阅比较 和常见陷阱 以获取解释和解决方法。
留言與分享