\begin{align*} (1)\ & [u(x) \pm v(x)]' = u'(x) \pm v'(x) \\[10pt] (2)\ & [u(x)v(x)]' = u'(x)v(x) + u(x)v'(x) \\[10pt] (3)\ & \left[\frac{u(x)}{v(x)}\right]' = \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)} \end{align*}

证明

(1) 加减法则

\begin{align*} [u(x) \pm v(x)]' &= \lim_{\Delta x \to 0} \frac{[u(x + \Delta x) \pm v(x + \Delta x)] - [u(x) \pm v(x)]}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{[u(x + \Delta x) - u(x)] \pm [v(x + \Delta x) - v(x)]}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{u(x + \Delta x) - u(x)}{\Delta x} \pm \lim_{\Delta x \to 0} \frac{v(x + \Delta x) - v(x)}{\Delta x} \\ &= u'(x) \pm v'(x) \end{align*}

(2) 乘法法则

\begin{align*} [u(x)v(x)]' &= \lim_{\Delta x \to 0} \frac{u(x + \Delta x)v(x + \Delta x) - u(x)v(x)}{\Delta x} \\ &= \lim_{\Delta x \to 0} \left[ \frac{u(x + \Delta x) - u(x)}{\Delta x} \cdot v(x + \Delta x) + u(x) \cdot \frac{v(x + \Delta x) - v(x)}{\Delta x} \right] \\ &= u'(x)v(x) + u(x)v'(x) \end{align*}

(3) 除法法则

\begin{align*} \left[\frac{u(x)}{v(x)}\right]' &= \lim_{\Delta x \to 0} \frac{\frac{u(x + \Delta x)}{v(x + \Delta x)} - \frac{u(x)}{v(x)}}{\Delta x} \\ &= \lim_{\Delta x \to 0} \frac{u(x + \Delta x)v(x) - u(x)v(x + \Delta x)}{\Delta x \cdot v(x)v(x + \Delta x)} \\ &= \lim_{\Delta x \to 0} \frac{ \frac{[u(x + \Delta x) - u(x)]v(x)}{\Delta x} - \frac{u(x)[v(x + \Delta x) - v(x)]}{\Delta x} }{v(x)v(x + \Delta x)} \\ &= \frac{u'(x)v(x) - u(x)v'(x)}{v^2(x)} \end{align*}

反函数的导数

\begin{align*} [f^{-1}(x)]' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta y \to 0} \frac{1}{\frac{\Delta x}{\Delta y}} = \frac{1}{f'(y)} \end{align*}

复合函数导数

\begin{align*} y &= f(u) \\ u &= g(x) \\ y &= f[g(x)] \\[10pt] \frac{dy}{dx} &= f'(u) \cdot g'(x) = \frac{dy}{du} \cdot \frac{du}{dx} \end{align*}

隐函数求导

例1

\begin{align*} x + y^3 - 1 &= 0 \\ 1 + 3y^2 \cdot \frac{dy}{dx} &= 0 \end{align*}

例2

\begin{align*} e^y + xy - e &= 0 \\ e^y \frac{dy}{dx} + y + x\frac{dy}{dx} &= 0 \end{align*}

参数方程导数

运动学示例

\begin{align*} \begin{cases} x = v_1 t \\ y = v_2 t - \frac{1}{2}gt^2 \end{cases} \end{align*}

一般形式

\begin{align*} \begin{cases} x = \varphi(t) \\ y = \psi(t) \end{cases} \quad \Rightarrow \quad \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\psi'(t)}{\varphi'(t)} \end{align*}